Skip to main content

Advertisement

Log in

GPER functions as a tumor suppressor in triple-negative breast cancer cells

Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Background

The orphan, membrane-bound estrogen receptor (GPER) is expressed at high levels in a large fraction of breast cancer patients and its expression is favorable for patients’ survival.

Methods

We investigated the role of GPER as a potential tumor suppressor in triple-negative breast cancer cells MDA-MB-231 and MDA-MB-468 using cell cycle analysis and apoptosis assay. The constitutive activity of GPER was investigated.

Results

GPER-specific activation with G-1 agonist inhibited breast cancer cell growth in concentration-dependent manner via induction of the cell cycle arrest in G2/M phase, enhanced phosphorylation of histone H3 and caspase-3-mediated apoptosis. Analysis of the methylation status of the GPER promoter in the triple-negative breast cancer cells and in tissues derived from breast cancer patients revealed that GPER amount is regulated by epigenetic mechanisms and GPER expression is inactivated by promoter methylation. Furthermore, GPER expression was induced by stress factors, such as radiation, and GPER amount inversely correlated with the p53 expression level.

Conclusions

Overall, our results establish the protective role in breast cancer tumorigenesis, and the cell surface expression of GPER makes it an excellent potential therapeutic target for triple-negative breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Ahola TM, Manninen T, Alkio N, Ylikomi T (2002) G protein-coupled receptor 30 is critical for a progestin-induced growth inhibition in MCF-7 breast cancer cells. Endocrinology 143:3376–3384

    Article  CAS  PubMed  Google Scholar 

  • Albanito L, Madeo A, Lappano R, Vivacqua A, Rago V, Carpino A, Oprea TI, Prossnitz ER, Musti AM, Ando S, Maggiolini M (2007) G protein-coupled receptor 30 (GPR30) mediates gene expression changes and growth response to 17beta-estradiol and selective GPR30 ligand G-1 in ovarian cancer cells. Cancer Res 67:1859–1866

    Article  CAS  PubMed  Google Scholar 

  • Albanito L, Sisci D, Aquila S, Brunelli E, Vivacqua A, Madeo A, Lappano R, Pandey DP, Picard D, Mauro L, Ando S, Maggiolini M (2008) Epidermal growth factor induces G protein-coupled receptor 30 expression in estrogen receptor-negative breast cancer cells. Endocrinology 149:3799–3808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arias-Pulido H, Royce M, Gong Y, Joste N, Lomo L, Lee SJ, Chaher N, Verschraegen C, Lara J, Prossnitz ER, Cristofanilli M (2010) GPR30 and estrogen receptor expression: new insights into hormone dependence of inflammatory breast cancer. Breast Cancer Res Treat 123:51–58

    Article  CAS  PubMed  Google Scholar 

  • Ariazi EA, Brailoiu E, Yerrum S, Shupp HA, Slifker MJ, Cunliffe HE, Black MA, Donato AL, Arterburn JB, Oprea TI, Prossnitz ER, Dun NJ, Jordan VC (2010) The G protein-coupled receptor GPR30 inhibits proliferation of estrogen receptor-positive breast cancer cells. Cancer Res 70:1184–1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bologa CG, Revankar CM, Young SM, Edwards BS, Arterburn JB, Kiselyov AS, Parker MA, Tkachenko SE, Savchuck NP, Sklar LA, Oprea TI, Prossnitz ER (2006) Virtual and biomolecular screening converge on a selective agonist for GPR30. Nat Chem Biol 2:207–212

    Article  CAS  PubMed  Google Scholar 

  • Chan QK, Lam HM, Ng CF, Lee AY, Chan ES, Ng HK, Ho SM, Lau KM (2010) Activation of GPR30 inhibits the growth of prostate cancer cells through sustained activation of Erk1/2, c-jun/c-fos-dependent upregulation of p21, and induction of G(2) cell-cycle arrest. Cell Death Differ 17:1511–1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chimento A, Casaburi I, Bartucci M, Patrizii M, Dattilo R, Avena P, Ando S, Pezzi V, Sirianni R (2013) Selective GPER activation decreases proliferation and activates apoptosis in tumor Leydig cells. Cell Death Dis 4:e747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi HJ, Fukui M, Zhu BT (2011) Role of cyclin B1/Cdc2 up-regulation in the development of mitotic prometaphase arrest in human breast cancer cells treated with nocodazole. PLoS One 6:e24312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dennis MK, Burai R, Ramesh C, Petrie WK, Alcon SN, Nayak TK, Bologa CG, Leitao A, Brailoiu E, Deliu E, Dun NJ, Sklar LA, Hathaway HJ, Arterburn JB, Oprea TI, Prossnitz ER (2009) In vivo effects of a GPR30 antagonist. Nat Chem Biol 5:421–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dorsam RT, Gutkind JS (2007) G-protein-coupled receptors and cancer. Nat Rev Cancer 7:79–94

    Article  CAS  PubMed  Google Scholar 

  • Esteller M, Corn PG, Baylin SB, Herman JG (2001) A gene hypermethylation profile of human cancer. Cancer Res 61:3225–3229

    CAS  PubMed  Google Scholar 

  • Fan P, Yue W, Wang JP, Aiyar S, Li Y, Kim TH, Santen RJ (2009) Mechanisms of resistance to structurally diverse antiestrogens differ under premenopausal and postmenopausal conditions: evidence from in vitro breast cancer cell models. Endocrinology 150:2036–2045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fei P, El Deiry WS (2003) P53 and radiation responses. Oncogene 22:5774–5783

    Article  CAS  PubMed  Google Scholar 

  • Filardo EJ, Quinn JA, Bland KI, Frackelton AR Jr (2000) Estrogen-induced activation of Erk-1 and Erk-2 requires the G protein-coupled receptor homolog, GPR30, and occurs via trans-activation of the epidermal growth factor receptor through release of HB-EGF. Mol Endocrinol 14:1649–1660

    Article  CAS  PubMed  Google Scholar 

  • Filardo EJ, Quinn JA, Frackelton AR Jr, Bland KI (2002) Estrogen action via the G protein-coupled receptor, GPR30: stimulation of adenylyl cyclase and cAMP-mediated attenuation of the epidermal growth factor receptor-to-MAPK signaling axis. Mol Endocrinol 16:70–84

    Article  CAS  PubMed  Google Scholar 

  • Filardo EJ, Graeber CT, Quinn JA, Resnick MB, Giri D, DeLellis RA, Steinhoff MM, Sabo E (2006) Distribution of GPR30, a seven membrane-spanning estrogen receptor, in primary breast cancer and its association with clinicopathologic determinants of tumor progression. Clin Cancer Res 12:6359–6366

    Article  CAS  PubMed  Google Scholar 

  • Fujiwara S, Terai Y, Kawaguchi H, Takai M, Yoo S, Tanaka Y, Tanaka T, Tsunetoh S, Sasaki H, Kanemura M, Tanabe A, Yamashita Y, Ohmichi M (2012) GPR30 regulates the EGFR-Akt cascade and predicts lower survival in patients with ovarian cancer. J Ovarian Res 5:35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao F, Ma X, Ostmann AB, Das SK (2011) GPR30 activation opposes estrogen-dependent uterine growth via inhibition of stromal ERK1/2 and estrogen receptor alpha (ERalpha) phosphorylation signals. Endocrinology 152:1434–1447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Girgert R, Emons G, Grundker C (2012) Inactivation of GPR30 reduces growth of triple-negative breast cancer cells: possible application in targeted therapy. Breast Cancer Res Treat 134:199–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hans F, Dimitrov S (2001) Histone H3 phosphorylation and cell division. Oncogene 20:3021–3027

    Article  CAS  PubMed  Google Scholar 

  • Holm A, Baldetorp B, Olde B, Leeb-Lundberg LM, Nilsson BO (2011) The GPER1 agonist G-1 attenuates endothelial cell proliferation by inhibiting DNA synthesis and accumulating cells in the S and G2 phases of the cell cycle. J Vasc Res 48:327–335

    Article  CAS  PubMed  Google Scholar 

  • Ignatov A, Lintzel J, Kreienkamp HJ, Schaller HC (2003) Sphingosine-1-phosphate is a high-affinity ligand for the G protein-coupled receptor GPR6 from mouse and induces intracellular Ca2+ release by activating the sphingosine-kinase pathway. Biochem Biophys Res Commun 311:329–336

    Article  CAS  PubMed  Google Scholar 

  • Ignatov A, Bischoff J, Schwarzenau C, Krebs T, Kuester D, Herrmann K, Costa SD, Roessner A, Semczuk A, Schneider-Stock R (2008) P16 alterations increase the metastatic potential of endometrial carcinoma. Gynecol Oncol 111:365–371

    Article  CAS  PubMed  Google Scholar 

  • Ignatov A, Bischoff J, Ignatov T, Schwarzenau C, Krebs T, Kuester D, Costa SD, Roessner A, Semczuk A, Schneider-Stock R (2010a) APC promoter hypermethylation is an early event in endometrial tumorigenesis. Cancer Sci 101(2):321–327

  • Ignatov T, Eggemann H, Semczuk A, Smith B, Bischoff J, Roessner A, Costa SD, Kalinski T, Ignatov A (2010b) Role of GPR30 in endometrial pathology after tamoxifen for breast cancer. Am J Obstet Gynecol 203:595-16

    Article  Google Scholar 

  • Ignatov A, Ignatov T, Roessner A, Costa SD, Kalinski T (2010c) Role of GPR30 in the mechanisms of tamoxifen resistance in breast cancer MCF-7 cells. Breast Cancer Res Treat 123:87–96

    Google Scholar 

  • Ignatov A, Ignatov T, Weissenborn C, Eggemann H, Bischoff J, Semczuk A, Roessner A, Costa SD, Kalinski T (2011) G-protein-coupled estrogen receptor GPR30 and tamoxifen resistance in breast cancer. Breast Cancer Res Treat 128:457–466

    Article  CAS  PubMed  Google Scholar 

  • Ignatov T, Modl S, Thulig M, Weissenborn C, Treeck O, Ortmann O, Zenclussen A, Costa SD, Kalinski T, Ignatov A (2013a) GPER-1 acts as a tumor suppressor in ovarian cancer. J Ovarian Res 6:51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ignatov T, Weissenborn C, Poehlmann A, Lemke A, Semczuk A, Roessner A, Costa SD, Kalinski T, Ignatov A (2013b) GPER-1 expression decreases during breast cancer tumorigenesis. Cancer Invest 31:309–315

    Article  CAS  PubMed  Google Scholar 

  • Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW (1991) Participation of p53 protein in the cellular response to DNA damage. Cancer Res 51:6304–6311

    CAS  PubMed  Google Scholar 

  • Kuo WH, Chang LY, Liu DL, Hwa HL, Lin JJ, Lee PH, Chen CN, Lien HC, Yuan RH, Shun CT, Chang KJ, Hsieh FJ (2007) The interactions between GPR30 and the major biomarkers in infiltrating ductal carcinoma of the breast in an Asian population. Taiwan J Obstet Gynecol 46:135–145

    Article  PubMed  Google Scholar 

  • Leblanc K, Sexton E, Parent S, Belanger G, Dery MC, Boucher V, Asselin E (2007) Effects of 4-hydroxytamoxifen, raloxifene and ICI 182 780 on survival of uterine cancer cell lines in the presence and absence of exogenous estrogens. Int J Oncol 30:477–487

    CAS  PubMed  Google Scholar 

  • Li LC, Dahiya R (2002) MethPrimer: designing primers for methylation PCRs. Bioinformatics 18:1427–1431

    Article  CAS  PubMed  Google Scholar 

  • Lim LY, Vidnovic N, Ellisen LW, Leong CO (2009) Mutant p53 mediates survival of breast cancer cells. Br J Cancer 101:1606–1612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Li JG, Zheng XY, Jin F, Dong HT (2009) Expression of CD133, PAX2, ESA, and GPR30 in invasive ductal breast carcinomas. Chin Med J (Engl) 122:2763–2769

    Google Scholar 

  • Maggiolini M, Vivacqua A, Fasanella G, Recchia AG, Sisci D, Pezzi V, Montanaro D, Musti AM, Picard D, Ando S (2004) The G protein-coupled receptor GPR30 mediates c-fos up-regulation by 17beta-estradiol and phytoestrogens in breast cancer cells. J Biol Chem 279:27008–27016

    Article  CAS  PubMed  Google Scholar 

  • Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D (2000) Molecular portraits of human breast tumours. Nature 406:747–752

    Article  CAS  PubMed  Google Scholar 

  • Prossnitz ER, Arterburn JB, Smith HO, Oprea TI, Sklar LA, Hathaway HJ (2008) Estrogen signaling through the transmembrane G protein-coupled receptor GPR30. Annu Rev Physiol 70:165–190

    Article  CAS  PubMed  Google Scholar 

  • Schneider BP, Winer EP, Foulkes WD, Garber J, Perou CM, Richardson A, Sledge GW, Carey LA (2008) Triple-negative breast cancer: risk factors to potential targets. Clin Cancer Res 14:8010–8018

    Article  CAS  PubMed  Google Scholar 

  • Schumacher A, Brachwitz N, Sohr S, Engeland K, Langwisch S, Dolaptchieva M, Alexander T, Taran A, Malfertheiner SF, Costa SD, Zimmermann G, Nitschke C, Volk HD, Alexander H, Gunzer M, Zenclussen AC (2009) Human chorionic gonadotropin attracts regulatory T cells into the fetal-maternal interface during early human pregnancy. J Immunol 182:5488–5497

    Article  CAS  PubMed  Google Scholar 

  • Smith HO, Leslie KK, Singh M, Qualls CR, Revankar CM, Joste NE, Prossnitz ER (2007) GPR30: a novel indicator of poor survival for endometrial carcinoma. Am J Obstet Gynecol 196:386–389

    PubMed  Google Scholar 

  • Smith HO, Arias-Pulido H, Kuo DY, Howard T, Qualls CR, Lee SJ, Verschraegen CF, Hathaway HJ, Joste NE, Prossnitz ER (2009) GPR30 predicts poor survival for ovarian cancer. Gynecol Oncol 114:465–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun W, Yang J (2010) Functional mechanisms for human tumor suppressors. J Cancer 1:136–140

    Article  PubMed  PubMed Central  Google Scholar 

  • Tam SW, Shay JW, Pagano M (1994) Differential expression and cell cycle regulation of the cyclin-dependent kinase 4 inhibitor p16Ink4. Cancer Res 54:5816–5820

    CAS  PubMed  Google Scholar 

  • Toh WH, Nam SY, Sabapathy K (2010) An essential role for p73 in regulating mitotic cell death. Cell Death Differ 17:787–800

    Article  CAS  PubMed  Google Scholar 

  • Tu G, Hu D, Yang G, Yu T (2009) The correlation between GPR30 and clinicopathologic variables in breast carcinomas. Technol Cancer Res Treat 8:231–234

    Article  CAS  PubMed  Google Scholar 

  • Vivacqua A, Bonofiglio D, Recchia AG, Musti AM, Picard D, Ando S, Maggiolini M (2006) The G protein-coupled receptor GPR30 mediates the proliferative effects induced by 17beta-estradiol and hydroxytamoxifen in endometrial cancer cells. Mol Endocrinol 20:631–646

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Lv X, Jiang C, Davis JS (2012) The putative G-protein coupled estrogen receptor agonist G-1 suppresses proliferation of ovarian and breast cancer cells in a GPER-independent manner. Am J Transl Res 4:390–402

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Lv X, He C, Hua G, Tsai MY, Davis JS (2013) The G-protein-coupled estrogen receptor agonist G-1 suppresses proliferation of ovarian cancer cells by blocking tubulin polymerization. Cell Death Dis 4:e869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by Deutsche Krebshilfe.

Conflict of interest

This work was supported by a grant from Deutsche Krebshilfe to A.I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atanas Ignatov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weißenborn, C., Ignatov, T., Ochel, HJ. et al. GPER functions as a tumor suppressor in triple-negative breast cancer cells. J Cancer Res Clin Oncol 140, 713–723 (2014). https://doi.org/10.1007/s00432-014-1620-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-014-1620-8

Keywords

Navigation