Skip to main content
Log in

MALDI-imaging segmentation is a powerful tool for spatial functional proteomic analysis of human larynx carcinoma

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

For several decades, conventional histological staining and immunohistochemistry (IHC) have been the main tools to visualize and understand tissue morphology and structure. IHC visualizes the spatial distribution of individual protein species directly in tissue. However, a specific antibody is required for each protein, and multiplexing capabilities are extremely limited, rarely visualizing more than two proteins simultaneously. With the recent emergence of matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-imaging), it is becoming possible to study more complex proteomic patterns directly in tissue. However, the analysis and interpretation of large and complex MALDI-imaging data requires advanced computational methods. In this paper, we show how the recently introduced method of spatial segmentation can be applied to analysis and interpretation of a larynx carcinoma section and compare the spatial segmentation with the histological annotation of the same tissue section.

Methods

Matrix-assisted laser desorption/ionization imaging is a label-free spatially resolved analytical technique, which allows detection and visualization of hundreds of proteins at once. Spatial segmentation of the MALDI-imaging data by clustering of spectra by their similarity was performed, automatically generating spatial a segmentation map of the tissue section, where regions of similar proteomic patterns were highlighted. The tissue was stained with the hematoxylin and eosin (H&E), histopathologically analyzed and annotated. The segmentation map was interpreted after its overlay with the H&E microscopy image.

Results

The automatically generated segmentation map exhibits high correspondence to the detailed histological annotation of the larynx carcinoma tissue section. By superimposing, the segmentation map based on the proteomic profiles with H&E-stained microscopic images, we demonstrate precise localization of complex and histopathologically relevant tissue features in an automated way.

Conclusions

The combination of MALDI-imaging and automatic spatial segmentation is a useful approach in analyzing carcinoma tissue and provides a deeper insight into the functional proteomic organization of the respective tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albrethsen J, Bogebo R, Gammeltoft S, Olsen J, Winther B, Raskov H (2005) Upregulated expression of human neutrophil peptides 1, 2 and 3 (HNP 1–3) in colon cancer serum and tumours: a biomarker study. BMC Cancer 5(1):8

    Article  PubMed  Google Scholar 

  • Alexandrov T, Kobarg JH (2011) Efficient spatial segmentation of large imaging mass spectrometry datasets with spatially aware clustering. Bioinformatics 27(13):i230–i238. doi:10.1093/bioinformatics/btr246

    Article  CAS  PubMed  Google Scholar 

  • Alexandrov T, Becker M, Deininger SO, Ernst G, Wehder L, Grasmair M, von Eggeling F, Thiele H, Maass P (2010) Spatial segmentation of imaging mass spectrometry data with edge-preserving image denoising and clustering. J Proteome Res 9(12):6535–6546. doi:10.1021/pr100734z

    Article  CAS  PubMed  Google Scholar 

  • Alexandrov T, Meding S, Trede D, Kobarg JH, Balluff B, Walch A, Thiele H, Maass P (2011) Super-resolution segmentation of imaging mass spectrometry data: solving the issue of low lateral resolution. J Proteomics. doi:10.1016/j.jprot.2011.08.002

    PubMed  Google Scholar 

  • Cazares L, Adam B, Ward M, Nasim S, Schellhammer P, Semmes O, Wright GJ (2002) Normal, benign, preneoplastic, and malignant prostate cells have distinct protein expression profiles resolved by surface enhanced laser desorption/ionization mass spectrometry. Clin Cancer Res 8(8):2541–2552

    CAS  PubMed  Google Scholar 

  • Cazares LH, Troyer DA, Wang B, Drake RR, Semmes OJ (2011) MALDI tissue imaging: from biomarker discovery to clinical applications. Anal Bioanal Chem 401(1):17–27. doi:10.1007/s00216-011-5003-6

    Article  CAS  PubMed  Google Scholar 

  • Chaurand P, Sanders ME, Jensen RA, Caprioli RM (2004) Proteomics in diagnostic pathology: profiling and imaging proteins directly in tissue sections. Am J Pathol 165(4):1057–1068

    Article  CAS  PubMed  Google Scholar 

  • Deininger S, Ebert M, Fütterer A, Gerhard M, Röcken C (2008) MALDI imaging combined with hierarchical clustering as a new tool for the interpretation of complex human cancers. J Proteome Res 7(12):5230–5236

    Article  CAS  PubMed  Google Scholar 

  • Deutskens F, Yang J, Caprioli RM (2011) High spatial resolution imaging mass spectrometry and classical histology on a single tissue section. J Mass Spectrom 46(6):568–571. doi:10.1002/jms.1926

    Article  CAS  PubMed  Google Scholar 

  • Driemel O, Murzik U, Escher N, Melle C, Bleul A, Dahse R, Reichert TE, Ernst G, von Eggeling F (2007) Protein profiling of oral brush biopsies: S100A8 and S100A9 can differentiate between normal, premalignant and tumor cells. Proteomics Clin Appl 1:486–493

    Article  CAS  PubMed  Google Scholar 

  • Driemel O, Escher N, Ernst G, Melle C, von Eggeling F (2010) S100A8 cellular distribution in normal epithelium, hyperplasia, dysplasia and squamous cell carcinoma and its concentration in serum. Anal Quant Cytol Histol 32(4):219–224

    PubMed  Google Scholar 

  • Escher N, Spies-Weisshart B, Kaatz M, Melle C, Bleul A, Driesch D, Wollina U, von Eggeling F (2006) Identification of HNP3 as a tumour marker in CD4+ and CD4-lymphocytes of patients with cutaneous T-cell lymphoma. Eur J Cancer 42(2):249–255

    Article  CAS  PubMed  Google Scholar 

  • Hermani A, Hess J, De SB, Medunjanin S, Grobholz R, Trojan L, Angel P, Mayer D (2005) Calcium-binding proteins S100A8 and S100A9 as novel diagnostic markers in human prostate cancer. Clin Cancer Res 11(14):5146–5152

    Article  CAS  PubMed  Google Scholar 

  • Hermani A, De SB, Medunjanin S, Tessier PA, Mayer D (2006) S100A8 and S100A9 activate MAP kinase and NF-kappaB signaling pathways and trigger translocation of RAGE in human prostate cancer cells. Exp Cell Res 312(2):184–197

    Article  CAS  PubMed  Google Scholar 

  • Holle A, Haase A, Kayser M, Hohndorf J (2006) Optimizing UV laser focus profiles for improved MALDI performance. J Mass Spectrom 41(6):705–716. doi:10.1002/jms.1041

    Article  CAS  PubMed  Google Scholar 

  • Jr G, Cazares L, Leung S, Nasim S, Adam B, Yip T, Schellhammer P, Gong L, Vlahou A (1999) Proteinchip(R) surface enhanced laser desorption/ionization (SELDI) mass spectrometry: a novel protein biochip technology for detection of prostate cancer biomarkers in complex protein mixtures. Prostate Cancer Prostatic Dis 2(5/6):264–276. doi:10.1038/sj.pcan.4500384

    Article  PubMed  Google Scholar 

  • Jurchen JC, Rubakhin SS, Sweedler JV (2005) MALDI-MS imaging of features smaller than the size of the laser beam. J Am Soc Mass Spectrom 16(10):1654–1659. doi:10.1016/j.jasms.2005.06.006

    Article  CAS  PubMed  Google Scholar 

  • Lagarrigue M, Becker M, Lavigne R, Deininger SO, Walch A, Aubry F, Suckau D, Pineau C (2011) Revisiting rat spermatogenesis with MALDI imaging at 20-microm resolution. Mol Cell Proteomics 10(3):M110 005991. doi:10.1074/mcp.M110.005991

    PubMed  Google Scholar 

  • Lundy FT, Orr DF, Gallagher JR, Maxwell P, Shaw C, Napier SS, Gerald CC, Lamey PJ, Marley JJ (2004) Identification and overexpression of human neutrophil alpha-defensins (human neutrophil peptides 1, 2 and 3) in squamous cell carcinomas of the human tongue. Oral Oncol 40(2):139–144

    Article  CAS  PubMed  Google Scholar 

  • Melle C, Ernst G, Schimmel B, Bleul A, Koscielny S, Wiesner A, Bogumil R, Möller U, Osterloh D, Halbhuber K, von Eggeling F (2004) A technical triade for proteomic identification and characterization of cancer biomarkers. Cancer Res 64(12):4099–4104. doi:10.1158/0008-5472.CAN-03-3807

    Article  CAS  PubMed  Google Scholar 

  • Melle C, Ernst G, Schimmel B, Bleul A, Thieme H, Kaufmann R, Mothes H, Settmacher U, Claussen U, Halbhuber KJ, von Eggeling F (2005) Discovery and identification of alpha-defensins as low abundant, tumor-derived serum markers in colorectal cancer. Gastroenterology 129(1):66–73

    Article  CAS  PubMed  Google Scholar 

  • Moog-Lutz C, Bouillet P, Regnier CH, Tomasetto C, Mattei MG, Chenard MP, Anglard P, Rio MC, Basset P (1995) Comparative expression of the psoriasin (S100A7) and S100C genes in breast carcinoma and co-localization to human chromosome 1q21-q22. Int J Cancer 63(2):297–303

    Article  CAS  PubMed  Google Scholar 

  • Muller CA, Markovic-Lipkovski J, Klatt T, Gamper J, Schwarz G, Beck H, Deeg M, Kalbacher H, Widmann S, Wessels JT, Becker V, Muller GA, Flad T (2002) Human alpha-defensins HNPs-1, -2, and -3 in renal cell carcinoma: influences on tumor cell proliferation. Am J Pathol 160(4):1311–1324

    Article  CAS  PubMed  Google Scholar 

  • Opitz F, Melle C, Schenke-Layland K, Degenkolbe I, Martin DP, von Eggeling F, Wahlers T, Stock UA (2004) Protein chip system technology: a powerful tool to analyze expression differences in tissue-engineered blood vessels. Tissue Eng 10(3–4):611–620

    Article  CAS  PubMed  Google Scholar 

  • Paradis V, Degos F, Dargere D, Pham N, Belghiti J, Degott C, Janeau JL, Bezeaud A, Delforge D, Cubizolles M, Laurendeau I, Bedossa P (2005) Identification of a new marker of hepatocellular carcinoma by serum protein profiling of patients with chronic liver diseases. Hepatology 41(1):40–47

    Article  CAS  PubMed  Google Scholar 

  • Rauser S, Marquardt C, Balluff B, Deininger S-O, Albers C, Belau E, Hartmer R, Suckau D, Specht K, Ebert MP, Schmitt M, Aubele M, Hofler H, Walch A (2010) Classification of HER2 receptor status in breast cancer tissues by MALDI imaging mass spectrometry. J Proteome Res 9(4):1854–1863

    Article  CAS  PubMed  Google Scholar 

  • Rezende TM, de Souza Freire M, Franco OL (2010) Head and neck cancer: proteomic advances and biomarker achievements. Cancer 116(21):4914–4925. doi:10.1002/cncr.25245

    Article  PubMed  Google Scholar 

  • Rompp A, Guenther S, Schober Y, Schulz O, Takats Z, Kummer W, Spengler B (2010) Histology by mass spectrometry: label-free tissue characterization obtained from high-accuracy bioanalytical imaging. Angew Chem Int Ed Engl 49(22):3834–3838. doi:10.1002/anie.200905559

    Article  PubMed  Google Scholar 

  • Rompp A, Guenther S, Takats Z, Spengler B (2011) Mass spectrometry imaging with high resolution in mass and space (HR(2) MSI) for reliable investigation of drug compound distributions on the cellular level. Anal Bioanal Chem 401(1):65–73. doi:10.1007/s00216-011-4990-7

    Article  PubMed  Google Scholar 

  • Seeley E, Caprioli R (2008) Molecular imaging of proteins in tissues by mass spectrometry. Proc Natl Acad Sci USA 105(47):18126–18131. doi:10.1073/pnas.0801374105

    Article  CAS  PubMed  Google Scholar 

  • Semmes O, Feng Z, Adam B, Banez L, Bigbee W, Campos D, Cazares L, Chan D, Grizzle W, Izbicka E, Kagan J, Malik G, McLerran D, Moul J, Partin A, Prasanna P, Rosenzweig J, Sokoll L, Srivastava S, Thompson I, Welsh M, White N, Winget M, Yasui Y, Zhang Z, Zhu L (2005) Evaluation of serum protein profiling by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry for the detection of prostate cancer: I. Assessment of platform reproducibility. Clin Chem 51(1):102–112. doi:10.1373/clinchem.2004.038950

    Article  CAS  PubMed  Google Scholar 

  • Sobin LGM, Wittekind C (2009) TNM Classification of Malignant Tumours (UICC International Union Against Cancer), 7th edn. Wiley-Blackwell, Oxford

    Google Scholar 

  • Stulik J, Osterreicher J, Koupilova K, Knizek J, Macela A, Bures J, Jandik P, Langr F, Dedic K, Jungblut PR (1999) The analysis of S100A9 and S100A8 expression in matched sets of macroscopically normal colon mucosa and colorectal carcinoma: the S100A9 and S100A8 positive cells underlie and invade tumor mass. Electrophoresis 20(4–5):1047–1054

    Article  CAS  PubMed  Google Scholar 

  • van Remoortere A, van Zeijl RJ, van den Oever N, Franck J, Longuespee R, Wisztorski M, Salzet M, Deelder AM, Fournier I, McDonnell LA (2010) MALDI imaging and profiling MS of higher mass proteins from tissue. J Am Soc Mass Spectr 21(11):1922–1929

    Google Scholar 

  • Vogl T, Tenbrock K, Ludwig S, Leukert N, Ehrhardt C, van Zoelen MA, Nacken W, Foell D, van der Poll T, Sorg C, Roth J (2007) Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat Med 13(9):1042–1049

    Article  CAS  PubMed  Google Scholar 

  • von Eggeling F, Davies H, Lomas L, Fiedler W, Junker K, Claussen U, Ernst G (2000) Tissue-specific microdissection coupled with protein chip array technologies: applications in cancer research. Biotechniques 29(5):1066–1070

    Google Scholar 

  • von Eggeling F, Junker K, Fiedle W, Wollscheid V, Dürst M, Claussen U, Ernst G (2001) Mass spectrometry meets chip technology: a new proteomic tool in cancer research? Electrophoresis 22(14):2898–2902. doi:10.1002/1522-2683(200108)22:14<2898:AID-ELPS2898>3.0.CO;2-A

    Article  Google Scholar 

  • von Eggeling F, Melle C, Ernst G (2007) Microdissecting the proteome. Proteomics 7(16):2729–2737

    Article  Google Scholar 

  • Walch A, Rauser S, Deininger SO, Hofler H (2008) MALDI imaging mass spectrometry for direct tissue analysis: a new frontier for molecular histology. Histochem Cell Biol 130(3):421–434. doi:10.1007/s00418-008-0469-9

    Article  CAS  PubMed  Google Scholar 

  • Ward DG, Suggett N, Cheng Y, Wei W, Johnson H, Billingham LJ, Ismail T, Wakelam MJ, Johnson PJ, Martin A (2006) Identification of serum biomarkers for colon cancer by proteomic analysis. BrJ Cancer 94(12):1898–1905

    Article  CAS  Google Scholar 

  • Wehder L, Ernst G, Crecelius AC, Guntinas-Lichius O, Melle C, Schubert US, von Eggeling F (2010) Depicting the spatial distribution of proteins in human tumor tissue combining SELDI and MALDI imaging and immunohistochemistry. J Histochem Cytochem 58(10):929–937

    Article  CAS  PubMed  Google Scholar 

  • Yong HY, Moon A (2007) Roles of calcium-binding proteins, S100A8 and S100A9, in invasive phenotype of human gastric cancer cells. Arch Pharm Res 30(1):75–81

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodore Alexandrov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexandrov, T., Becker, M., Guntinas-Lichius, O. et al. MALDI-imaging segmentation is a powerful tool for spatial functional proteomic analysis of human larynx carcinoma. J Cancer Res Clin Oncol 139, 85–95 (2013). https://doi.org/10.1007/s00432-012-1303-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-012-1303-2

Keywords

Navigation