Skip to main content

Advertisement

Log in

Comparative proteomic analysis of paclitaxel sensitive A549 lung adenocarcinoma cell line and its resistant counterpart A549-Taxol

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Paclitaxel is used as the first-line chemotherapy for Non-Small Cell Lung Cancer (NSCLC), but acquired resistance becomes a critical problem. Several mechanisms have been proposed in paclitaxel resistance, but they are not sufficient to exhaustively explain this resistance emergence. To better investigate molecular resistance mechanisms, a comparative proteomic approach was carried out to identify differentially expressed proteins between human lung adenocarcinoma A549 cell line (paclitaxel sensitive) and A549-Taxol cell line (acquired resistant).

Methods

A paclitaxel-resistant subline (A549-Taxol) derived from the parental-sensitive cell line A549 was established by stepwise selection by paclitaxel. Total proteins in the two cell lines were separated by fluorescent differential gel electrophoresis (DIGE). Image analysis was carried out with the DeCyder 2D 6.5 software. Proteins associated with chemoresistance process were identified by matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF–MS/MS). Some key molecules were valuated by Western blot.

Results

Thirty proteins were identified and grouped into eight main functional classes according to the biological processes in which they are likely to participate, i.e. signal transduction, cytoskeleton, redox reaction, energy and metabolism, and so on. Alterations of these processes might be involved in paclitaxel resistance. Most of the proteins showed mitochondrial and cytoplasm location. The up-regulation of CK8, CK18, ALDH1, CAST and ANX I in A549-Taxol cell line was verified by Western blot, in coincidence with the data obtained from proteomic analysis.

Conclusion

For the first time, differentially expressed proteins between paclitaxel-sensitive cell line and paclitaxel-resistant one were explored by comparative proteomic approach in human lung adenocarcinoma. It may be useful for further studying of resistance mechanisms and screening of resistance biomarkers, so as to develop tailored therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

2-DE:

Two-dimensional gel electrophoresis

CK8:

Cytokeratin-8

CK18:

Cytokeratin-18

G6PD:

Glucose-6-phosphate 1-dehydrogenase

RALDH1:

Retinal dehydrogenase 1

References

  • Bergman PJ (2003) Mechanisms of anticancer drug resistance. Vet Clin North Am Small Anim Pract 33:651–667

    Article  PubMed  Google Scholar 

  • Board P, Harris M, Flanagan J, Langton L, Coggan M (1998) Genetic heterogeneity of the structure and function of GSTT2 and GSTP1. Chem Biol Interact 111–112:83–89

    Article  PubMed  Google Scholar 

  • Canuto RA, Ferro M, Muzio G, Bassi AM, Leonarduzzi G, Maggiora M, Adamo D, Poli G, Lindahl R (1994) Role of aldehyde metabolizing enzymes in mediating effects of aldehyde products of lipid peroxidation in liver cells. Carcinogenesis 15:1359–1364

    Article  CAS  PubMed  Google Scholar 

  • Caulin C, Ware CF, Magin TM, Oshima RG (2000) Keratin-dependent, epithelial resistance to tumor necrosis factor-induced apoptosis. J Cell Biol 149:17–22

    Article  CAS  PubMed  Google Scholar 

  • Emori Y, Imajoh-Ohmi S, Maki M (1992) Calpain and calpastatin–structure and function. Seikagaku 64:1201–1224

    CAS  PubMed  Google Scholar 

  • Fais S, De Milito A, Lozupone F (2005) The role of FAS to ezrin association in FAS-mediated apoptosis. Apoptosis 10:941–947

    Article  CAS  PubMed  Google Scholar 

  • Gautreau A, Poullet P, Louvard D, Arpin M (1999) Ezrin, a plasma membrane-microfilament linker, signals cell survival through the phosphatidylinositol 3-kinase/Akt pathway. Proc Natl Acad Sci USA 96:7300–7305

    Article  CAS  PubMed  Google Scholar 

  • Gervasoni JE Jr, Hindenburg AA, Vezeridis MP, Schulze S, Wanebo HJ, Mehta S (2004) An effective in vitro antitumor response against human pancreatic carcinoma with paclitaxel and daunorubicin by induction of both necrosis and apoptosis. Anticancer Res 24:2617–2626

    CAS  PubMed  Google Scholar 

  • Gilbert S, Loranger A, Daigle N, Marceau N (2001) Simple epithelium keratins 8 and 18 provide resistance to Fas-mediated apoptosis. The protection occurs through a receptor-targeting modulation. J Cell Biol 154:763–773

    Article  CAS  PubMed  Google Scholar 

  • Gomperts BN, Gong-Cooper X, Hackett BP (2004) Foxj1 regulates basal body anchoring to the cytoskeleton of ciliated pulmonary epithelial cells. J Cell Sci 117:1329–1337

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Santiago L, Alfonso P, Suarez Y, Nunez A, Garcia-Fernandez LF, Alvarez E, Munoz A, Casal JI (2007) Proteomic analysis of the resistance to aplidin in human cancer cells. J Proteome Res 6:1286–1294

    Article  CAS  PubMed  Google Scholar 

  • Haber M, Burkhart CA, Regl DL, Madafiglio J, Norris MD, Horwitz SB (1995) Altered expression of M beta 2, the class II beta-tubulin isotype, in a murine J774.2 cell line with a high level of taxol resistance. J Biol Chem 270:31269–31275

    Article  CAS  PubMed  Google Scholar 

  • Impens F, Van Damme P, Demol H, Van Damme J, Vandekerckhove J, Gevaert K (2008) Mechanistic insight into taxol-induced cell death. Oncogene 27:4580–4591

    Article  CAS  PubMed  Google Scholar 

  • Inada H, Izawa I, Nishizawa M, Fujita E, Kiyono T, Takahashi T, Momoi T, Inagaki M (2001) Keratin attenuates tumor necrosis factor-induced cytotoxicity through association with TRADD. J Cell Biol 155:415–426

    Article  CAS  PubMed  Google Scholar 

  • Ishii T, Teramoto S, Matsuse T (2004) GSTP1 affects chemoresistance against camptothecin in human lung adenocarcinoma cells. Cancer Lett 216:89–102

    Article  CAS  PubMed  Google Scholar 

  • Jaffrezou JP, Dumontet C, Derry WB, Duran G, Chen G, Tsuchiya E, Wilson L, Jordan MA, Sikic BI (1995) Novel mechanism of resistance to paclitaxel (Taxol) in human K562 leukemia cells by combined selection with PSC 833. Oncol Res 7:517–527

    CAS  PubMed  Google Scholar 

  • Jemal A, Murray T, Ward E, Samuels A, Tiwari RC, Ghafoor A, Feuer EJ, Thun MJ (2005) Cancer statistics, 2005. CA Cancer J Clin 55:10–30

    Article  PubMed  Google Scholar 

  • Le Moguen K, Lincet H, Deslandes E, Hubert-Roux M, Lange C, Poulain L, Gauduchon P, Baudin B (2006) Comparative proteomic analysis of cisplatin sensitive IGROV1 ovarian carcinoma cell line and its resistant counterpart IGROV1–R10. Proteomics 6:5183–5192

    Article  CAS  PubMed  Google Scholar 

  • Li L, Luan Y, Wang G, Tang B, Li D, Zhang W et al (2004) Development and characterization of five cell models for chemoresistance studies of human ovarian carcinoma. Int J Mol Med 14:257–264

    CAS  PubMed  Google Scholar 

  • Lilley KS (2003) Protein profiling using two-dimensional difference gel electrophoresis (2-D DIGE). Curr Protoc Protein Sci Chapter 22: Unit 22 22

  • Liu Y, Liu H, Han B, Zhang JT (2006) Identification of 14–3-3sigma as a contributor to drug resistance in human breast cancer cells using functional proteomic analysis. Cancer Res 66:3248–3255

    Article  CAS  PubMed  Google Scholar 

  • Luciani F, Molinari A, Lozupone F, Calcabrini A, Lugini L, Stringaro A, Puddu P, Arancia G, Cianfriglia M, Fais S (2002) P-glycoprotein-actin association through ERM family proteins: a role in P-glycoprotein function in human cells of lymphoid origin. Blood 99:641–648

    Article  CAS  PubMed  Google Scholar 

  • Murachi T (1990) Calpain and calpastatin. Rinsho Byori 38:337–346

    CAS  PubMed  Google Scholar 

  • Murphy L, Henry M, Meleady P, Clynes M, Keenan J (2008) Proteomic investigation of taxol and taxotere resistance and invasiveness in a squamous lung carcinoma cell line. Biochim Biophys Acta 1784:1184–1191

    CAS  PubMed  Google Scholar 

  • Parekh H, Simpkins H (1997) The transport and binding of taxol. Gen Pharmacol 29:167–172

    CAS  PubMed  Google Scholar 

  • Rowinsky EK, Donehower RC (1995) Paclitaxel (taxol). N Engl J Med 332:1004–1014

    Article  CAS  PubMed  Google Scholar 

  • Sakai T (2006) Drug resistance and cell survival mechanisms for anticancer drugs. Nippon Yakurigaku Zasshi 127:342–347

    Article  CAS  PubMed  Google Scholar 

  • Sangrajrang S, Fellous A (2000) Taxol resistance. Chemotherapy 46:327–334

    Article  CAS  PubMed  Google Scholar 

  • Seve P, Dumontet C (2005) Chemoresistance in non-small cell lung cancer. Curr Med Chem Anticancer Agents 5:73–88

    Article  CAS  PubMed  Google Scholar 

  • Timms JF, Cramer R (2008) Difference gel electrophoresis. Proteomics 8:4886–4897

    Article  CAS  PubMed  Google Scholar 

  • Tsukita S, Yonemura S (1997) ERM (ezrin/radixin/moesin) family: from cytoskeleton to signal transduction. Curr Opin Cell Biol 9:70–75

    Article  CAS  PubMed  Google Scholar 

  • Wang YF, Chen CY, Chung SF, Chiou YH, Lo HR (2004) Involvement of oxidative stress and caspase activation in paclitaxel-induced apoptosis of primary effusion lymphoma cells. Cancer Chemother Pharmacol 54:322–330

    Article  CAS  PubMed  Google Scholar 

  • Wendt A, Thompson VF, Goll DE (2004) Interaction of calpastatin with calpain: a review. Biol Chem 385:465–472

    Article  CAS  PubMed  Google Scholar 

  • Wilson TR, Longley DB, Johnston PG (2006) Chemoresistance in solid tumours. Ann Oncol 17(Suppl 10):x315–x324

    Article  PubMed  Google Scholar 

  • Yusuf RZ, Duan Z, Lamendola DE, Penson RT, Seiden MV (2003) Paclitaxel resistance: molecular mechanisms and pharmacologic manipulation. Curr Cancer Drug Targets 3:1–19

    Article  CAS  PubMed  Google Scholar 

  • Zhang JT, Liu Y (2007) Use of comparative proteomics to identify potential resistance mechanisms in cancer treatment. Cancer Treat Rev 33:741–756

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Shanghai United Municipal Hospitals Project (to Hui-fang SHA) (NO.SHDC12007103), Shanghai Municipal Natural Science Foundation (to Qiang-ling SUN) (NO.10ZR1428100), and grant for cancer research from Shanghai charity foundation (to Qiang-ling SUN). We wish to thank all the researchers of public service platform of Shanghai Shenkang medical center which located in Ruijin Hospital for their assistance with the mass spectrometric analyses in this study.

Conflict of interest statement

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-fang Sha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Ql., Sha, Hf., Yang, Xh. et al. Comparative proteomic analysis of paclitaxel sensitive A549 lung adenocarcinoma cell line and its resistant counterpart A549-Taxol. J Cancer Res Clin Oncol 137, 521–532 (2011). https://doi.org/10.1007/s00432-010-0913-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-010-0913-9

Keywords

Navigation