Skip to main content

Advertisement

Log in

Speckle tracking echocardiography detects decreased cardiac longitudinal function in anthracycline-exposed survivors of childhood cancer

  • Original Article
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Longitudinal motion significantly contributes to the contraction of the ventricles. We studied the left (LV) and right ventricular (RV) longitudinal functions in 75 anthracycline-exposed, long-term childhood cancer survivors and 75 healthy controls with conventional echocardiography, tissue Doppler imaging (TDI), speckle tracking echocardiography (STE) of the mitral and tricuspid annular motion, and real-time three-dimensional echocardiography (RT-3DE). Cardiac magnetic resonance (CMR) imaging was performed on 61 of the survivors. The survivors had lower systolic myocardial velocities in the LV and lower diastolic velocities in both ventricles by TDI than did their healthy peers. The STE-based tissue motion annular displacement (TMAD) values describing the LV and RV systolic longitudinal function (MAD and TAD mid%, respectively) were also lower among the survivors (15.4 ± 2.4 vs. 16.1 ± 2.2 %, p = 0.049 and 22.5 ± 3.0 vs. 23.5 ± 3.0 %, p = 0.035). MAD and TAD mid in millimeters correlated with the respective ventricular volumes measured with RT-3DE or CMR.

Conclusion: Childhood cancer survivors exposed to low to moderate anthracycline doses had decreased longitudinal systolic and diastolic functions (TDI or STE) compared with healthy controls. The STE-based TMAD is a fast and reproducible method to assess cardiac longitudinal function.

What is Known?

High anthracycline doses cause LV dysfunction as evidenced by a decreased ejection fraction.

What is new?

Low to moderate anthracycline doses also have a negative impact on the LV and RV longitudinal systolic and diastolic function.

TMAD is a new and fast method to assess the cardiac longitudinal function after anthracycline exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

CMR:

Cardiac magnetic resonance

EDV:

End-diastolic volume

EF:

Ejection fraction

ESV:

End-systolic volume

LV:

Left ventricle/ventricular

MAD:

Mitral annular displacement

RT-3DE:

Real-time three-dimensional echocardiography

RV:

Right ventricle/ventricular

STE:

Speckle tracking echocardiography

TAD:

Tricuspid annular displacement

TAPSE:

Tricuspid annular plane systolic excursion

TDI:

Tissue Doppler imaging

TMAD:

Tissue motion annular displacement

References

  1. Ahmad H, Mor-Avi V, Lang RM, Nesser HJ, Weinert L, Tsang W, Steringer-Mascherbauer R, Niel J, Salgo IS, Sugeng L (2012) Assessment of right ventricular function using echocardiographic speckle tracking of the tricuspid annular motion: comparison with cardiac magnetic resonance. Echocardiography 29:19–24

    Article  PubMed  Google Scholar 

  2. Black D, Bryant J, Peebles C, Godfrey K, Hanson M, Vettukattil J (2013) Tissue motion annular displacement of the mitral valve using two-dimensional speckle tracking echocardiography predicts the left ventricular ejection fraction in normal children. Cardiol Young 27:1–9

    Google Scholar 

  3. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310

    Article  CAS  PubMed  Google Scholar 

  4. Brown SB, Raina A, Katz D, Szerlip M, Wiegers SE, Forfia PR (2011) Longitudinal shortening accounts for the majority of right ventricular contraction and improves after pulmonary vasodilator therapy in normal subjects and patients with pulmonary arterial hypertension. Chest 140:27–33

    Article  PubMed  Google Scholar 

  5. Buss SJ, Mereles D, Emami M, Korosoglou G, Riffel JH, Bertel D, Schonland SO, Hegenbart U, Katus HA, Hardt SE (2012) Rapid assessment of longitudinal systolic left ventricular function using speckle tracking of the mitral annulus. Clin Res Cardiol 101:273–280

    Article  PubMed  Google Scholar 

  6. Cheung YF, Hong WJ, Chan GC, Wong SJ, Ha SY (2010) Left ventricular myocardial deformation and mechanical dyssynchrony in children with normal ventricular shortening fraction after anthracycline therapy. Heart 96:1137–1141

    Article  PubMed  Google Scholar 

  7. DeCara JM, Toledo E, Salgo IS, Lammertin G, Weinert L, Lang RM (2005) Evaluation of left ventricular systolic function using automated angle-independent motion tracking of mitral annular displacement. J Am Soc Echocardiogr 18:1266–1269

    Article  PubMed  Google Scholar 

  8. Dokainish H, Zoghbi WA, Lakkis NM, Ambriz E, Patel R, Quinones MA, Nagueh SF (2005) Incremental predictive power of B-type natriuretic peptide and tissue Doppler echocardiography in the prognosis of patients with congestive heart failure. J Am Coll Cardiol 45:1223–1226

    Article  CAS  PubMed  Google Scholar 

  9. Eidem BW, McMahon CJ, Cohen RR, Wu J, Finkelshteyn I, Kovalchin JP, Ayres NA, Bezold LI, O'Brian Smith E, Pignatelli RH (2004) Impact of cardiac growth on Doppler tissue imaging velocities: a study in healthy children. J Am Soc Echocardiogr 17:212–221

    Article  PubMed  Google Scholar 

  10. Ganame J, Claus P, Uyttebroeck A, Renard M, D'hooge J, Bijnens B, Sutherland GR, Eyskens B, Mertens L (2007) Myocardial dysfunction late after low-dose anthracycline treatment in asymptomatic pediatric patients. J Am Soc Echocardiogr 20:1351–1358

    Article  PubMed  Google Scholar 

  11. Haddad F, Hunt SA, Rosenthal DN, Murphy DJ (2008) Right ventricular function in cardiovascular disease, part I: anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation 117:1436–1448

    Article  PubMed  Google Scholar 

  12. Henein MY, Gibson DG (1999) Long axis function in disease. Heart 81:229–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kapusta L, Thijssen JM, Groot-Loonen J, Antonius T, Mulder J, Daniels O (2000) Tissue Doppler imaging in detection of myocardial dysfunction in survivors of childhood cancer treated with anthracyclines. Ultrasound Med Biol 26:1099–1108

    Article  CAS  PubMed  Google Scholar 

  14. Kocabas A, Kardelen F, Ertug H, Aldemir-Kocabas B, Tosun O, Yesilipek A, Hazar V, Akcurin G (2014) Assessment of early-onset chronic progressive anthracycline cardiotoxicity in children: different response patterns of right and left ventricles. Pediatr Cardiol 35:82–88

    Article  PubMed  Google Scholar 

  15. Koestenberger M, Nagel B, Ravekes W, Everett AD, Stueger HP, Heinzl B, Sorantin E, Cvirn G, Gamillscheg A (2011) Tricuspid annular plane systolic excursion and right ventricular ejection fraction in pediatric and adolescent patients with tetralogy of Fallot, patients with atrial septal defect, and age-matched normal subjects. Clin Res Cardiol 100:67–75

    Article  PubMed  Google Scholar 

  16. Koestenberger M, Ravekes W, Everett AD, Stueger HP, Heinzl B, Gamillscheg A, Cvirn G, Boysen A, Fandl A, Nagel B (2009) Right ventricular function in infants, children and adolescents: reference values of the tricuspid annular plane systolic excursion (TAPSE) in 640 healthy patients and calculation of z score values. J Am Soc Echocardiogr 22:715–719

    Article  PubMed  Google Scholar 

  17. Koopman LP, Slorach C, Manlhiot C, McCrindle BW, Friedberg MK, Mertens L, Jaeggi ET (2010) Myocardial tissue Doppler velocity imaging in children: comparative study between two ultrasound systems. J Am Soc Echocardiogr 23:929–937

    Article  PubMed  Google Scholar 

  18. Kremer LC, van Dalen EC, Offringa M, Voute PA (2002) Frequency and risk factors of anthracycline-induced clinical heart failure in children: a systematic review. Ann Oncol 13:503–512

    Article  CAS  PubMed  Google Scholar 

  19. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise JS, Solomon SD, Spencer KT, Sutton MS, Stewart WJ, Chamber Quantification Writing G, American Society of Echocardiography's Guidelines and Standards, Committee, European Association of E (2005) Recommendations for chamber quantification: a report from the American Society of Echocardiography's guidelines and standards committee and the chamber quantification writing group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 18:1440–1463

    Article  PubMed  Google Scholar 

  20. Lu X, Xie M, Tomberlin D, Klas B, Nadvoretskiy V, Ayres N, Towbin J, Ge S (2008) How accurately, reproducibly, and efficiently can we measure left ventricular indices using M-mode, 2-dimensional, and 3-dimensional echocardiography in children? Am Heart J 155:946–953

    Article  PubMed  Google Scholar 

  21. Marcus KA, Mavinkurve-Groothuis AM, Barends M, van Dijk A, Feuth T, de Korte C, Kapusta L (2011) Reference values for myocardial two-dimensional strain echocardiography in a healthy pediatric and young adult cohort. J Am Soc Echocardiogr 24:625–636

    Article  PubMed  Google Scholar 

  22. Mertens L, Ganame J, Claus P, Goemans N, Thijs D, Eyskens B, Van Laere D, Bijnens B, D’hooge J, Sutherland GR, Buyse G (2008) Early regional myocardial dysfunction in young patients with Duchenne muscular dystrophy. J Am Soc Echocardiogr 21:1049–1054

  23. Mor-Avi V, Lang RM, Badano LP, Belohlavek M, Cardim NM, Derumeaux G, Galderisi M, Marwick T, Nagueh SF, Sengupta PP, Sicari R, Smiseth OA, Smulevitz B, Takeuchi M, Thomas JD, Vannan M, Voigt JU, Zamorano JL (2011) Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. J Am Soc Echocardiogr 24:277–313

    Article  PubMed  Google Scholar 

  24. Ommen SR, Nishimura RA, Appleton CP, Miller FA, Oh JK, Redfield MM, Tajik AJ (2000) Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures: a comparative simultaneous Doppler-catheterization study. Circulation 102:1788–1794

    Article  CAS  PubMed  Google Scholar 

  25. Petitjean C, Rougon N, Cluzel P (2005) Assessment of myocardial function: a review of quantification methods and results using tagged MRI. J Cardiovasc Magn Reson 7:501–516

    Article  PubMed  Google Scholar 

  26. Sanchez-Quintana D, Garcia-Martinez V, Climent V, Hurle JM (1995) Morphological changes in the normal pattern of ventricular myoarchitecture in the developing human heart. Anat Rec 243:483–495

    Article  CAS  PubMed  Google Scholar 

  27. Sengupta PP, Korinek J, Belohlavek M, Narula J, Vannan MA, Jahangir A, Khandheria BK (2006) Left ventricular structure and function: basic science for cardiac imaging. J Am Coll Cardiol 48:1988–2001

    Article  PubMed  Google Scholar 

  28. Stapleton GE, Stapleton SL, Martinez A, Ayres NA, Kovalchin JP, Bezold LI, Pignatelli R, Eidem BW (2007) Evaluation of longitudinal ventricular function with tissue Doppler echocardiography in children treated with anthracyclines. J Am Soc Echocardiogr 20:492–497

    Article  PubMed  Google Scholar 

  29. Suzuki K, Akashi YJ, Mizukoshi K, Kou S, Takai M, Izumo M, Hayashi A, Ohtaki E, Nobuoka S, Miyake F (2012) Relationship between left ventricular ejection fraction and mitral annular displacement derived by speckle tracking echocardiography in patients with different heart diseases. J Cardiol 60:55–60

    Article  CAS  PubMed  Google Scholar 

  30. Tanindi A, Demirci U, Tacoy G, Buyukberber S, Alsancak Y, Coskun U, Yalcin R, Benekli M (2011) Assessment of right ventricular functions during cancer chemotherapy. Eur J Echocardiogr 12:834–840

    Article  PubMed  Google Scholar 

  31. Tsang W, Ahmad H, Patel AR, Sugeng L, Salgo IS, Weinert L, Mor-Avi V, Lang RM (2010) Rapid estimation of left ventricular function using echocardiographic speckle-tracking of mitral annular displacement. J Am Soc Echocardiogr 23:511–515

    Article  PubMed  Google Scholar 

  32. Van De Bruaene A, De Meester P, Voigt JU, Delcroix M, Pasquet A, De Backer J, De Pauw M, Naeije R, Vachiery JL, Paelinck B, Morissens M, Budts W (2012) Right ventricular function in patients with Eisenmenger syndrome. Am J Cardiol 109:1206–1211

    Article  PubMed  Google Scholar 

  33. Xu J, Peng Y, Li C, Zhang J, Zhou C, Huang L, Xia C, Tang H, Rao L (2011) Feasibility of assessing cardiac systolic function using longitudinal fractional shortening calculated by two-dimensional speckle tracking echocardiography. Echocardiography 28:402–407

    Article  PubMed  Google Scholar 

  34. Ylänen K, Poutanen T, Savikurki-Heikkilä P, Rinta-Kiikka I, Eerola A, Vettenranta K (2013) Cardiac magnetic resonance imaging in the evaluation of the late effects of anthracyclines among long-term survivors of childhood cancer. J Am Coll Cardiol 61:1539–1547

    Article  PubMed  Google Scholar 

  35. Ylänen K, Eerola A, Vettenranta K, Poutanen T (2014) Three-dimensional echocardiography and cardiac magnetic resonance imaging in the screening of long-term survivors of childhood cancer after cardiotoxic therapy. Am J Cardiol 113:1886–1892

    Article  PubMed  Google Scholar 

  36. Yu CM, Sanderson JE, Marwick TH, Oh JK (2007) Tissue Doppler imaging a new prognosticator for cardiovascular diseases. J Am Coll Cardiol 49:1903–1914

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors warmly thank Satu Ranta, RN, for the practical assistance during the project.

This work was financially supported by the following sources: the Blood Disease Research Foundation, Helsinki; the Competitive Research Funding of the Tampere University Hospital (9L114 and 9N084), Tampere; the EVO funds of the Tampere University Hospital, Tampere; the Emil Aaltonen Foundation, Tampere; the Finnish Association of Hematology, Helsinki; the Finnish Cancer Foundation, Helsinki; the Finnish Cultural Foundation, Helsinki; the Finnish Cultural Foundation Pirkanmaa Regional Fund, Ylöjärvi; the Finnish Medical Foundation, Helsinki; the Foundation for Pediatric Research, Helsinki; the National Graduate School of Clinical Investigations, Helsinki; the Päivikki and Sakari Sohlberg Foundation, Helsinki; the Scientific Foundation of the City of Tampere, Tampere; and the Väre Foundation for Pediatric Cancer, Helsinki. The funding sources were in no way involved in the design or conduct of the study or writing of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaisa Ylänen.

Ethics declarations

All procedures performed in studies involving human participants were in accordance with the ethical standards set by the institutional research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants (and/or their legal guardians). No animal data were included.

Conflict of interest

The authors declare that they have no conflicts of interest.

Authors’ contributions

Study concept and design: All authors.

Provision of study materials and patients: Kaisa Ylänen.

Collection and assembly of data: Kaisa Ylänen.

Data analysis and interpretation: All authors.

Manuscript writing: All authors.

Final approval of manuscript: All authors

Additional information

Communicated by Jaan Toelen

Electronic supplementary material

ESM 1

The intra- and inter-observer plots for MAD and TAD mid (in millimeters) - The intra-observer analyses (left) were reviewed by KY twice 6 months apart. The inter-observer analyses (right) were independently reviewed by 2 investigators (KY and TP). The bold horizontal line represents the mean difference. The dashed horizontal lines represent ±1.96 SD from the mean between the 2 measurements. (EPS 1073 kb) (GIF 153 kb)

High-resolution image (EPS 1073 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ylänen, K., Eerola, A., Vettenranta, K. et al. Speckle tracking echocardiography detects decreased cardiac longitudinal function in anthracycline-exposed survivors of childhood cancer. Eur J Pediatr 175, 1379–1386 (2016). https://doi.org/10.1007/s00431-016-2776-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00431-016-2776-9

Keywords

Navigation