Skip to main content

Advertisement

Log in

Manipulation of apoptosis and necroptosis signaling by herpesviruses

  • Review
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Like apoptosis, necroptosis is an innate immune mechanism that eliminates pathogen-infected cells. Receptor-interacting protein kinase (RIP)3 (also called RIPK3) mediates necrotic death by phosphorylating an executioner protein, MLKL, leading to plasma membrane leakage. The pathway is triggered against viruses that block caspase 8. In murine CMV, the viral inhibitor of caspase 8 activation prevents extrinsic apoptosis but also has the potential to unleash necroptosis. This virus encodes the viral inhibitor of RIP activation to prevent RIP homotypic interaction motif (RHIM)-dependent signal transduction and necroptosis. Recent investigations reveal a similar mechanism at play in the human alpha-herpesviruses, herpes simplex virus (HSV)1 and HSV2, where RHIM competitor function and caspase 8 suppression are carried out by the virus-encoded large subunit of ribonucleotide reductase (R1). In human cells, R1 inhibition of caspase 8 prevents TNF-induced apoptosis, but sensitizes to TNF-induced necroptosis. The RHIM and caspase 8 interaction domains of R1 collaborate to prevent RIP3-dependent steps and enable both herpesviruses to deflect host cell death machinery that would cut short infection. In mouse cells, HSV1 infection by itself triggers necroptosis by driving RIP3 protein kinase activity. HSV1 R1 contributes to the activation of RIP3 adaptor function in mice, a popular host animal for experimental infection. Based on these studies, infection of RIP3-kinase inactive mice should be explored in models of pathogenesis and latency. The necrotic death pathway that is suppressed during infection in the natural host becomes a cross-species barrier to infection in a non-natural host.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Galluzzi L, Brenner C, Morselli E, Touat Z, Kroemer G (2008) Viral control of mitochondrial apoptosis. PLoS Pathog 4(5):e1000018

    Article  PubMed Central  PubMed  Google Scholar 

  2. Mocarski ES, Upton JW, Kaiser WJ (2011) Viral infection and the evolution of caspase 8-regulated apoptotic and necrotic death pathways. Nat Rev Immunol 12(2):79–88. doi:10.1038/nature09857

    Article  PubMed  Google Scholar 

  3. Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116(2):205–219

    Article  CAS  PubMed  Google Scholar 

  4. McCormick AL, Mocarski ES (2013) Cell death pathways controlled by cytomegaloviruses. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, vol I. Caister Scientific Press, Norfolk, pp 263–276

    Google Scholar 

  5. Werden SJ, Rahman MM, McFadden G (2008) Poxvirus host range genes. Adv Virus Res 71:135–171. doi:10.1016/s0065-3527(08)00003-1

    Article  CAS  PubMed  Google Scholar 

  6. Jurak I, Schumacher U, Simic H, Voigt S, Brune W (2008) Murine cytomegalovirus m38.5 protein inhibits Bax-mediated cell death. J Virol 82(10):4812–4822

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Manzur M, Fleming P, Huang DC, Degli-Esposti MA, Andoniou CE (2009) Virally mediated inhibition of Bax in leukocytes promotes dissemination of murine cytomegalovirus. Cell Death Differ 16(2):312–320. doi:10.1038/cdd.2008.152

    Article  CAS  PubMed  Google Scholar 

  8. Crosby LN, McCormick AL, Mocarski ES (2013) Gene products of the embedded m41/m41.1 locus of murine cytomegalovirus differentially influence replication and pathogenesis. Virology 346:274–283

    Article  Google Scholar 

  9. Fleming P, Kvansakul M, Voigt V, Kile BT, Kluck RM, Huang DC, Degli-Esposti MA, Andoniou CE (2013) MCMV-mediated Inhibition of the pro-apoptotic Bak protein Is required for optimal in vivo replication. PLoS Pathog 9(2):e1003192. doi:10.1371/journal.ppat.1003192

    Article  PubMed Central  PubMed  Google Scholar 

  10. Handke W, Luig C, Popovic B, Krmpotic A, Jonjic S, Brune W (2013) Viral inhibition of BAK promotes murine cytomegalovirus dissemination to salivary glands. J Virol 87(6):3592–3596. doi:10.1128/jvi.02657-12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. E X, Hwang S, Oh S, Lee JS, Jeong JH, Gwack Y, Kowalik TF, Sun R, Jung JU, Liang C (2009) Viral Bcl-2-mediated evasion of autophagy aids chronic infection of gammaherpesvirus 68. PLoS Pathog 5(10):e1000609. doi:10.1371/journal.ppat.1000609

    Article  PubMed Central  PubMed  Google Scholar 

  12. Jurak I, Brune W (2006) Induction of apoptosis limits cytomegalovirus cross-species infection. EMBO J 25(11):2634–2642

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Micheau O, Tschopp J (2003) Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114(2):181–190

    Article  CAS  PubMed  Google Scholar 

  14. Feoktistova M, Geserick P, Kellert B, Dimitrova DP, Langlais C, Hupe M, Cain K, Macfarlane M, Hacker G, Leverkus M (2011) cIAPs block ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol Cell 43:449–463. doi:10.1016/j.molcel.2011.06.011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Tenev T, Bianchi K, Darding M, Broemer M, Langlais C, Wallberg F, Zachariou A, Lopez J, Macfarlane M, Cain K, Meier P (2011) The ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs. Mol Cell 43:432–448. doi:10.1016/j.molcel.2011.06.006

    Article  CAS  PubMed  Google Scholar 

  16. Feoktistova M, Leverkus M (2015) Programmed necrosis and necroptosis signalling. FEBS J 282(1):19–31. doi:10.1111/febs.13120

    Article  CAS  PubMed  Google Scholar 

  17. Upton JW, Chan FK (2014) Staying alive: cell death in antiviral immunity. Mol Cell 54(2):273–280. doi:10.1016/j.molcel.2014.01.027

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Mocarski ES, Kaiser WJ, Livingston-Rosanoff D, Upton JW, Daley-Bauer LP (2014) True grit: programmed necrosis in antiviral host defense, inflammation, and immunogenicity. J Immunol 192(5):2019–2026. doi:10.4049/jimmunol.1302426

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Chan FK, Luz NF, Moriwaki K (2014) Programmed necrosis in the cross talk of cell death and inflammation. Annu Rev Immunol. doi:10.1146/annurev-immunol-032414-112248

    PubMed  Google Scholar 

  20. Wallach D, Kang TB, Kovalenko A (2014) Concepts of tissue injury and cell death in inflammation: a historical perspective. Nat Rev Immunol 14(1):51–59. doi:10.1038/nri3561

    Article  CAS  PubMed  Google Scholar 

  21. Kaiser WJ, Upton JW, Mocarski ES (2013) Viral modulation of programmed necrosis. Curr Opin Virol 3:296–306. doi:10.1016/j.coviro.2013.05.019

    Article  CAS  PubMed  Google Scholar 

  22. Chan FK, Shisler J, Bixby JG, Felices M, Zheng L, Appel M, Orenstein J, Moss B, Lenardo MJ (2003) A role for tumor necrosis factor receptor-2 and receptor-interacting protein in programmed necrosis and antiviral responses. J Biol Chem 278(51):51613–51621

    Article  CAS  PubMed  Google Scholar 

  23. Cho YS, Challa S, Moquin D, Genga R, Ray TD, Guildford M, Chan FK (2009) Phosphorylation-driven assembly of the RIP1–RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137(6):1112–1123. doi:10.1016/j.cell.2009.05.037

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Moquin D, Chan FK (2010) The molecular regulation of programmed necrotic cell injury. Trends Biochem Sci 35(8):434–441. doi:10.1016/j.tibs.2010.03.001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Berger AK, Danthi P (2013) Reovirus activates a caspase-independent cell death pathway. mBio 4(3):e00178-13. doi:10.1128/mBio.00178-13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Upton JW, Kaiser WJ, Mocarski ES (2008) Cytomegalovirus M45 cell death suppression requires receptor-interacting protein (RIP) homotypic interaction motif (RHIM)-dependent interaction with RIP1. J Biol Chem 283(25):16966–16970

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Upton JW, Kaiser WJ, Mocarski ES (2010) Virus inhibition of RIP3-dependent necrosis. Cell Host Microbe 7(4):302–313. doi:10.1016/j.chom.2010.03.006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Upton JW, Kaiser WJ, Mocarski ES (2012) DAI (ZBP1/DLM-1) complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA. Cell Host Microbe 11:290–297

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Guo H, Omoto S, Harris PA, Finger JN, Bertin J, Gough PJ, Kaiser WJ, Mocarski ES (2015) Herpes simplex virus suppression of necroptosis in human cells. Cell Host Microbe 17:243–251

    Article  CAS  PubMed  Google Scholar 

  30. Wang X, Li Y, Liu S, Yu X, Li L, Shi C, He W, Li J, Xu L, Hu Z, Yu L, Yang Z, Chen Q, Ge L, Zhang Z, Zhou B, Jiang X, Chen S, He S (2014) Direct activation of RIP3/MLKL-dependent necrosis by herpes simplex virus 1 (HSV-1) protein ICP6 triggers host antiviral defense. Proc Natl Acad Sci USA 111:15438–15443. doi:10.1073/pnas.1412767111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Huang Z, Wu S-Q, Liang Y, Zhou X, Chen W, Li L, Wu J, Zhuang Q, Chen C, Li J, Zhong C, Xia W, Zhou R, Zheng C, Han J (2015) Targeting HSV-1 protein ICP6 by RIP1 and RIP3 initiates necroptosis to restrict HSV-1 propagation in mice. Cell Host Microbe 17:229–242

    Article  CAS  PubMed  Google Scholar 

  32. Robinson N, McComb S, Mulligan R, Dudani R, Krishnan L, Sad S (2012) Type I interferon induces necroptosis in macrophages during infection with Salmonella enterica serovar Typhimurium. Nat Immunol 13:954–962. doi:10.1038/ni.2397

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Weng D, Marty-Roix R, Ganesan S, Proulx MK, Vladimer GI, Kaiser WJ, Mocarski ES, Pouliot K, Chan FK, Kelliher MA, Harris PA, Bertin J, Gough PJ, Shayakhmetov DM, Goguen JD, Fitzgerald KA, Silverman N, Lien E (2014) Caspase-8 and RIP kinases regulate bacteria-induced innate immune responses and cell death. Proc Natl Acad Sci USA 111:7391–7396. doi:10.1073/pnas.1403477111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Oberst A, Dillon CP, Weinlich R, McCormick LL, Fitzgerald P, Pop C, Hakem R, Salvesen GS, Green DR (2011) Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature 471:363–367. doi:10.1038/nature09852

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Kaiser WJ, Upton JW, Long AB, Livingston-Rosanoff D, Daley-Bauer LP, Hakem R, Caspary T, Mocarski ES (2011) RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature 471(7338):368–372. doi:10.1038/nature09857

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Zhang H, Zhou X, McQuade T, Li J, Chan FK, Zhang J (2011) Functional complementation between FADD and RIP1 in embryos and lymphocytes. Nature 471(7338):373–376. doi:10.1038/nature09878

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Dillon CP, Oberst A, Weinlich R, Janke LJ, Kang TB, Ben-Moshe T, Mak TW, Wallach D, Green DR (2012) Survival function of the FADD-caspase-8-cFLIP(L) complex. Cell Rep 1:401–407

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Kaiser WJ, Daley-Bauer LP, Thapa RJ, Mandal P, Berger SB, Huang C, Sundararajan A, Guo H, Roback L, Speck SH, Bertin J, Gough PJ, Balachandran S, Mocarski ES (2014) RIP1 suppresses innate immune necrotic as well as apoptotic cell death during mammalian parturition. Proc Natl Acad Sci USA 111:7753–7758. doi:10.1073/pnas.1401857111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Rickard JA, O’Donnell JA, Evans JM, Lalaoui N, Poh AR, Rogers T, Vince JE, Lawlor KE, Ninnis RL, Anderton H, Hall C, Spall SK, Phesse TJ, Abud HE, Cengia LH, Corbin J, Mifsud S, Di Rago L, Metcalf D, Ernst M, Dewson G, Roberts AW, Alexander WS, Murphy JM, Ekert PG, Masters SL, Vaux DL, Croker BA, Gerlic M, Silke J (2014) RIPK1 regulates RIPK3–MLKL-driven systemic inflammation and emergency hematopoiesis. Cell 157(5):1175–1188. doi:10.1016/j.cell.2014.04.019

    Article  CAS  PubMed  Google Scholar 

  40. Dillon CP, Weinlich R, Rodriguez DA, Cripps JG, Quarato G, Gurung P, Verbist KC, Brewer TL, Llambi F, Gong YN, Janke LJ, Kelliher MA, Kanneganti TD, Green DR (2014) RIPK1 blocks early postnatal lethality mediated by caspase-8 and RIPK3. Cell 157(5):1189–1202. doi:10.1016/j.cell.2014.04.018

    Article  CAS  PubMed  Google Scholar 

  41. Mandal P, Berger SB, Pillay S, Moriwaki K, Huang C, Guo H, Lich JD, Finger J, Kasparcova V, Votta B, Ouellette M, King BW, Wisnoski D, Lakdawala AS, DeMartino MP, Casillas LN, Haile PA, Sehon CA, Marquis RW, Upton J, Daley-Bauer LP, Roback L, Ramia N, Dovey CM, Carette JE, Chan FK, Bertin J, Gough PJ, Mocarski ES, Kaiser WJ (2014) RIP3 induces apoptosis independent of pronecrotic kinase activity. Mol Cell 56(4):481–495. doi:10.1016/j.molcel.2014.10.021

    Article  CAS  PubMed  Google Scholar 

  42. Newton K, Dugger DL, Wickliffe KE, Kapoor N, de-Almagro MC, Vucic D, Komuves L, Ferrando RE, French DM, Webster J, Roose-Girma M, Warming S, Dixit VM (2014) Activity of protein kinase RIPK3 determines whether cells die by necroptosis or apoptosis. Science 343:1357–1360. doi:10.1126/science.1249361

    Article  CAS  PubMed  Google Scholar 

  43. He S, Wang L, Miao L, Wang T, Du F, Zhao L, Wang X (2009) Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 137(6):1100–1111. doi:10.1016/j.cell.2009.05.021

    Article  CAS  PubMed  Google Scholar 

  44. Zhang DW, Shao J, Lin J, Zhang N, Lu BJ, Lin SC, Dong MQ, Han J (2009) RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325:332–336. doi:10.1126/science.1172308

    Article  CAS  PubMed  Google Scholar 

  45. Ch’en IL, Tsau JS, Molkentin JD, Komatsu M, Hedrick SM (2011) Mechanisms of necroptosis in T cells. J Exp Med 208(4):633–641. doi:10.1084/jem.20110251

    Article  PubMed Central  PubMed  Google Scholar 

  46. Thapa RJ, Chen P, Cheung M, Nogusa S, Pei J, Peri S, Testa JR, Balachandran S (2013) NF-kappaB inhibition by bortezomib permits IFN-gamma-activated RIP1 kinase-dependent necrosis in renal cell carcinoma. Mol Cancer Ther 12(8):1568–1578. doi:10.1158/1535-7163.mct-12-1010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. McComb S, Cessford E, Alturki NA, Joseph J, Shutinoski B, Startek JB, Gamero AM, Mossman KL, Sad S (2014) Type-I interferon signaling through ISGF3 complex is required for sustained Rip3 activation and necroptosis in macrophages. Proc Natl Acad Sci USA 111(31):E3206–E3213. doi:10.1073/pnas.1407068111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. He S, Liang Y, Shao F, Wang X (2011) Toll-like receptors activate programmed necrosis in macrophages through a receptor-interacting kinase-3-mediated pathway. Proc Natl Acad Sci USA 108(50):20054–20059. doi:10.1073/pnas.1116302108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Kaiser WJ, Sridharan H, Huang C, Mandal P, Upton JW, Gough PJ, Sehon CA, Marquis RW, Bertin J, Mocarski ES (2013) Toll-like receptor 3-mediated necrosis via TRIF, RIP3 and MLKL. J Biol Chem 288:31268–31279. doi:10.1074/jbc.M113.462341

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Brune W, Menard C, Heesemann J, Koszinowski UH (2001) A ribonucleotide reductase homolog of cytomegalovirus and endothelial cell tropism. Science 291(5502):303–305. doi:10.1126/science.291.5502.303291/5502/303

    Article  CAS  PubMed  Google Scholar 

  51. Lembo D, Donalisio M, Hofer A, Cornaglia M, Brune W, Koszinowski U, Thelander L, Landolfo S (2004) The ribonucleotide reductase R1 homolog of murine cytomegalovirus is not a functional enzyme subunit but is required for pathogenesis. J Virol 78(8):4278–4288

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Lembo D, Brune W (2009) Tinkering with a viral ribonucleotide reductase. Trends Biochem Sci 34(1):25–32. doi:10.1016/j.tibs.2008.09.008

    Article  CAS  PubMed  Google Scholar 

  53. Galvan V, Roizman B (1998) Herpes simplex virus 1 induces and blocks apoptosis at multiple steps during infection and protects cells from exogenous inducers in a cell-type-dependent manner. Proc Natl Acad Sci USA 95(7):3931–3936

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Leopardi R, Van Sant C, Roizman B (1997) The herpes simplex virus 1 protein kinase US3 is required for protection from apoptosis induced by the virus. Proc Natl Acad Sci USA 94(15):7891–7896

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Peri P, Nuutila K, Vuorinen T, Saukko P, Hukkanen V (2011) Cathepsins are involved in virus-induced cell death in ICP4 and Us3 deletion mutant herpes simplex virus type 1-infected monocytic cells. J Gen Virol 92(Pt 1):173–180. doi:10.1099/vir.0.025080-0

    Article  CAS  PubMed  Google Scholar 

  56. Galvan V, Brandimarti R, Roizman B (1999) Herpes simplex virus 1 blocks caspase-3-independent and caspase-dependent pathways to cell death. J Virol 73(4):3219–3226

    PubMed Central  CAS  PubMed  Google Scholar 

  57. Zhou G, Roizman B (2000) Wild-type herpes simplex virus 1 blocks programmed cell death and release of cytochrome c but not the translocation of mitochondrial apoptosis-inducing factor to the nuclei of human embryonic lung fibroblasts. J Virol 74(19):9048–9053

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Munger J, Chee AV, Roizman B (2001) The U(S)3 protein kinase blocks apoptosis induced by the d120 mutant of herpes simplex virus 1 at a premitochondrial stage. J Virol 75(12):5491–5497

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Hagglund R, Munger J, Poon AP, Roizman B (2002) U(S)3 protein kinase of herpes simplex virus 1 blocks caspase 3 activation induced by the products of U(S)1.5 and U(L)13 genes and modulates expression of transduced U(S)1.5 open reading frame in a cell type-specific manner. J Virol 76(2):743–754

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Langelier Y, Bergeron S, Chabaud S, Lippens J, Guilbault C, Sasseville AM, Denis S, Mosser DD, Massie B (2002) The R1 subunit of herpes simplex virus ribonucleotide reductase protects cells against apoptosis at, or upstream of, caspase-8 activation. J Gen Virol 83(Pt 11):2779–2789

    CAS  PubMed  Google Scholar 

  61. Perkins D, Pereira EF, Aurelian L (2003) The herpes simplex virus type 2 R1 protein kinase (ICP10 PK) functions as a dominant regulator of apoptosis in hippocampal neurons involving activation of the ERK survival pathway and upregulation of the antiapoptotic protein Bag-1. J Virol 77(2):1292–1305

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Zhou G, Avitabile E, Campadelli-Fiume G, Roizman B (2003) The domains of glycoprotein D required to block apoptosis induced by herpes simplex virus 1 are largely distinct from those involved in cell-cell fusion and binding to nectin1. J Virol 77(6):3759–3767

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Leopardi R, Roizman B (1996) The herpes simplex virus major regulatory protein ICP4 blocks apoptosis induced by the virus or by hyperthermia. Proc Natl Acad Sci USA 93(18):9583–9587

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Benetti L, Roizman B (2004) Herpes simplex virus protein kinase US3 activates and functionally overlaps protein kinase A to block apoptosis. Proc Natl Acad Sci USA 101(25):9411–9416

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Munger J, Roizman B (2001) The US3 protein kinase of herpes simplex virus 1 mediates the posttranslational modification of BAD and prevents BAD-induced programmed cell death in the absence of other viral proteins. Proc Natl Acad Sci USA 98(18):10410–10415

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Zhou G, Roizman B (2002) Truncated forms of glycoprotein D of herpes simplex virus 1 capable of blocking apoptosis and of low-efficiency entry into cells form a heterodimer dependent on the presence of a cysteine located in the shared transmembrane domains. J Virol 76(22):11469–11475

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Benetti L, Munger J, Roizman B (2003) The herpes simplex virus 1 US3 protein kinase blocks caspase-dependent double cleavage and activation of the proapoptotic protein BAD. J Virol 77(11):6567–6573

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Perkins D, Yu Y, Bambrick LL, Yarowsky PJ, Aurelian L (2002) Expression of herpes simplex virus type 2 protein ICP10 PK rescues neurons from apoptosis due to serum deprivation or genetic defects. Exp Neurol 174(1):118–122. doi:10.1006/exnr.2001.7849

    Article  CAS  PubMed  Google Scholar 

  69. Perkins D, Pereira EF, Gober M, Yarowsky PJ, Aurelian L (2002) The herpes simplex virus type 2 R1 protein kinase (ICP10 PK) blocks apoptosis in hippocampal neurons, involving activation of the MEK/MAPK survival pathway. J Virol 76(3):1435–1449

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Chabaud S, Sasseville AM, Elahi SM, Caron A, Dufour F, Massie B, Langelier Y (2007) The ribonucleotide reductase domain of the R1 subunit of herpes simplex virus type 2 ribonucleotide reductase is essential for R1 antiapoptotic function. J Gen Virol 88(Pt 2):384–394. doi:10.1099/vir.0.82383-0

    Article  CAS  PubMed  Google Scholar 

  71. Dufour F, Sasseville AM, Chabaud S, Massie B, Siegel RM, Langelier Y (2011) The ribonucleotide reductase R1 subunits of herpes simplex virus types 1 and 2 protect cells against TNFalpha- and FasL-induced apoptosis by interacting with caspase-8. Apoptosis Int J Progr Cell Death 16(3):256–271. doi:10.1007/s10495-010-0560-2

    Article  CAS  Google Scholar 

  72. Han JY, Miller SA, Wolfe TM, Pourhassan H, Jerome KR (2009) Cell type-specific induction and inhibition of apoptosis by herpes simplex virus type 2 ICP10. J Virol 83(6):2765–2769. doi:10.1128/jvi.02088-08

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Aurelian L (2005) HSV-induced apoptosis in herpes encephalitis. Curr Top Microbiol Immunol 289:79–111

    CAS  PubMed  Google Scholar 

  74. Perng GC, Jones C, Ciacci-Zanella J, Stone M, Henderson G, Yukht A, Slanina SM, Hofman FM, Ghiasi H, Nesburn AB, Wechsler SL (2000) Virus-induced neuronal apoptosis blocked by the herpes simplex virus latency-associated transcript. Science 287(5457):1500–1503

    Article  CAS  PubMed  Google Scholar 

  75. Du T, Zhou G, Roizman B (2012) Induction of apoptosis accelerates reactivation of latent HSV-1 in ganglionic organ cultures and replication in cell cultures. Proc Natl Acad Sci USA 109(36):14616–14621. doi:10.1073/pnas.1212661109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Gober MD, Laing JM, Thompson SM, Aurelian L (2006) The growth compromised HSV-2 mutant deltaRR prevents kainic acid-induced apoptosis and loss of function in organotypic hippocampal cultures. Brain Res 1119(1):26–39. doi:10.1016/j.brainres.2006.08.078

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Bertin J, Armstrong RC, Ottilie S, Martin DA, Wang Y, Banks S, Wang GH, Senkevich TG, Alnemri ES, Moss B, Lenardo MJ, Tomaselli KJ, Cohen JI (1997) Death effector domain-containing herpesvirus and poxvirus proteins inhibit both Fas- and TNFR1-induced apoptosis. Proc Natl Acad Sci USA 94(4):1172–1176

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Skaletskaya A, Bartle LM, Chittenden T, McCormick AL, Mocarski ES, Goldmacher VS (2001) A cytomegalovirus-encoded inhibitor of apoptosis that suppresses caspase-8 activation. Proc Natl Acad Sci USA 98(14):7829–7834. doi:10.1073/pnas.141108798141108798

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Lundberg P, Welander PV, Edwards CK 3rd, van Rooijen N, Cantin E (2007) Tumor necrosis factor (TNF) protects resistant C57BL/6 mice against herpes simplex virus-induced encephalitis independently of signaling via TNF receptor 1 or 2. J Virol 81(3):1451–1460. doi:10.1128/jvi.02243-06

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Rossol-Voth R, Rossol S, Schutt KH, Corridori S, de Cian W, Falke D (1991) In vivo protective effect of tumour necrosis factor alpha against experimental infection with herpes simplex virus type 1. J Gen Virol 72(Pt 1):143–147

    Article  CAS  PubMed  Google Scholar 

  81. Sergerie Y, Rivest S, Boivin G (2007) Tumor necrosis factor-alpha and interleukin-1 beta play a critical role in the resistance against lethal herpes simplex virus encephalitis. J Infect Dis 196(6):853–860. doi:10.1086/520094

    Article  CAS  PubMed  Google Scholar 

  82. Sergerie Y, Boivin G, Gosselin D, Rivest S (2007) Delayed but not early glucocorticoid treatment protects the host during experimental herpes simplex virus encephalitis in mice. J Infect Dis 195(6):817–825. doi:10.1086/511987

    Article  CAS  PubMed  Google Scholar 

  83. Bousfiha A, Picard C, Boisson-Dupuis S, Zhang SY, Bustamante J, Puel A, Jouanguy E, Ailal F, El-Baghdadi J, Abel L, Casanova JL (2010) Primary immunodeficiencies of protective immunity to primary infections. Clin Immunol 135(2):204–209. doi:10.1016/j.clim.2010.02.001

    Article  CAS  PubMed  Google Scholar 

  84. Perez de Diego R, Sancho-Shimizu V, Lorenzo L, Puel A, Plancoulaine S, Picard C, Herman M, Cardon A, Durandy A, Bustamante J, Vallabhapurapu S, Bravo J, Warnatz K, Chaix Y, Cascarrigny F, Lebon P, Rozenberg F, Karin M, Tardieu M, Al-Muhsen S, Jouanguy E, Zhang SY, Abel L, Casanova JL (2010) Human TRAF3 adaptor molecule deficiency leads to impaired Toll-like receptor 3 response and susceptibility to herpes simplex encephalitis. Immunity 33(3):400–411. doi:10.1016/j.immuni.2010.08.014

    Article  CAS  PubMed  Google Scholar 

  85. Casanova JL, Abel L, Quintana-Murci L (2011) Human TLRs and IL-1Rs in host defense: natural insights from evolutionary, epidemiological, and clinical genetics. Annu Rev Immunol 29:447–491. doi:10.1146/annurev-immunol-030409-101335

    Article  CAS  PubMed  Google Scholar 

  86. Guo Y, Audry M, Ciancanelli M, Alsina L, Azevedo J, Herman M, Anguiano E, Sancho-Shimizu V, Lorenzo L, Pauwels E, Philippe PB, Perez de Diego R, Cardon A, Vogt G, Picard C, Andrianirina ZZ, Rozenberg F, Lebon P, Plancoulaine S, Tardieu M, Valerie D, Jouanguy E, Chaussabel D, Geissmann F, Abel L, Casanova JL, Zhang SY (2011) Herpes simplex virus encephalitis in a patient with complete TLR3 deficiency: TLR3 is otherwise redundant in protective immunity. J Exp Med 208(10):2083–2098. doi:10.1084/jem.20101568

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Sancho-Shimizu V, Perez de Diego R, Lorenzo L, Halwani R, Alangari A, Israelsson E, Fabrega S, Cardon A, Maluenda J, Tatematsu M, Mahvelati F, Herman M, Ciancanelli M, Guo Y, AlSum Z, Alkhamis N, Al-Makadma AS, Ghadiri A, Boucherit S, Plancoulaine S, Picard C, Rozenberg F, Tardieu M, Lebon P, Jouanguy E, Rezaei N, Seya T, Matsumoto M, Chaussabel D, Puel A, Zhang SY, Abel L, Al-Muhsen S, Casanova JL (2011) Herpes simplex encephalitis in children with autosomal recessive and dominant TRIF deficiency. J Clin Invest 121(12):4889–4902. doi:10.1172/jci59259

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Lafaille FG, Pessach IM, Zhang SY, Ciancanelli MJ, Herman M, Abhyankar A, Ying SW, Keros S, Goldstein PA, Mostoslavsky G, Ordovas-Montanes J, Jouanguy E, Plancoulaine S, Tu E, Elkabetz Y, Al-Muhsen S, Tardieu M, Schlaeger TM, Daley GQ, Abel L, Casanova JL, Studer L, Notarangelo LD (2012) Impaired intrinsic immunity to HSV-1 in human iPSC-derived TLR3-deficient CNS cells. Nature 491(7426):769–773. doi:10.1038/nature11583

    PubMed Central  CAS  PubMed  Google Scholar 

  89. Dufour F, Bertrand L, Pearson A, Grandvaux N, Langelier Y (2011) The ribonucleotide reductase R1 subunits of herpes simplex virus 1 and 2 protect cells against poly(I:C)-induced apoptosis. J Virol 85(17):8689–8701. doi:10.1128/jvi.00362-11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Support was from NIH (PHS Grants R01 AI020211 and R01 GM112547 to E.S.M and DP1 OD012198 to W.J.K.), although the content is solely the responsibility of the authors and not the NIH or PHS.

Ethical standard

This manuscript represents the effort of the authors such that all data are original, and the ideas presented are the authors’ own. All co-authors have consented to submission and have contributed sufficiently to the scientific work and therefore share collective responsibility for the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward S. Mocarski.

Additional information

This article is part of the Special Issue on Cytomegalovirus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, H., Kaiser, W.J. & Mocarski, E.S. Manipulation of apoptosis and necroptosis signaling by herpesviruses. Med Microbiol Immunol 204, 439–448 (2015). https://doi.org/10.1007/s00430-015-0410-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-015-0410-5

Keywords

Navigation