Skip to main content

Advertisement

Log in

Mast cells: innate attractors recruiting protective CD8 T cells to sites of cytomegalovirus infection

  • Review
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Reactivation of latent cytomegalovirus (CMV) in the transient immunocompromised state after hematoablative treatment is a major concern in patients undergoing hematopoietic cell transplantation (HCT) as a therapy of hematopoietic malignancies. Timely reconstitution of antiviral CD8 T cells and their efficient recruitment to the lungs is crucial for preventing interstitial pneumonia, the most severe disease manifestation of CMV in HCT recipients. Here, we review recent work in a murine model, implicating mast cells (MC) in the control of pulmonary infection. Murine CMV (mCMV) productively infects MC in vivo and triggers their degranulation, resulting in the release of the CC chemokine ligand 5 (CCL5) that attracts CD8 T cells to infiltrate infected tissues. Comparing infection of MC-sufficient C57BL/6 mice and congenic MC-deficient Kit W-sh/W-sh “sash” mutants revealed an inverse relation between the number of lung-infiltrating CD8 T cells and viral burden in the lungs. Specifically, reduced lung infiltration by CD8 T cells in “sash” mutants was associated with an impaired infection control. The causal, though indirect, involvement of MC in antiviral control was confirmed by reversion of the deficiency phenotype in “sash” mutants reconstituted with MC. These recent findings predict that efficient MC reconstitution facilitates the control of CMV infection also in immunocompromised HCT recipients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abraham SN, St John AL (2010) Mast cell-orchestrated immunity to pathogens. Nat Rev Immunol 10:440–452

    Article  CAS  PubMed  Google Scholar 

  2. Collington SJ, Williams TJ, Weller CL (2011) Mechanisms underlying the localisation of mast cells in tissues. Trends Immunol 32:478–485

    Article  CAS  PubMed  Google Scholar 

  3. Galli SJ, Tsai M (2012) IgE and mast cells in allergic disease. Nat Med 18:693–704

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Pennock JL, Grencis RK (2006) The mast cell and gut nematodes: damage and defence. Chem Immunol Allergy 90:128–140

    CAS  PubMed  Google Scholar 

  5. Galli SJ, Maurer M, Lantz CS (1999) Mast cells as sentinels of innate immunity. Curr Opin Immunol 11:53–59

    Article  CAS  PubMed  Google Scholar 

  6. Stassen M, Hültner L, Schmitt E (2002) Classical and alternative pathways of mast cell activation. Crit Rev Immunol 22:115–140

    Article  CAS  PubMed  Google Scholar 

  7. Wernersson S, Pejler G (2014) Mast cell secretory granules: armed for battle. Nat Rev Immunol 14:478–494

    Article  CAS  PubMed  Google Scholar 

  8. Galli SJ, Kalesnikoff J, Grimbaldeston MA, Piliponsky AM, Williams CM, Tsai M (2005) Mast cells as “tunable” effector and immunoregulatory cells: recent advances. Annu Rev Immunol 23:749–786

    Article  CAS  PubMed  Google Scholar 

  9. Tamamis P, Floudas CA (2014) Elucidating a key anti-HIV-1 and cancer-associated axis: the structure of CCL5 (Rantes) in complex with CCR5. Sci Rep 4:5447

    Article  CAS  PubMed  Google Scholar 

  10. Kohlmeier JE, Miller SC, Smith J, Lu B, Gerard C, Cookenham T, Roberts AD, Woodland DL (2008) The chemokine receptor CCR5 plays a key role in the early memory CD8+ T cell response to respiratory virus infections. Immunity 29:101–113

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Orinska Z, Bulanova E, Budagian V, Metz M, Maurer M, Bulfone-Paus S (2005) TLR3-induced activation of mast cells modulates CD8+ T-cell recruitment. Blood 106:978–987

    Article  CAS  PubMed  Google Scholar 

  12. Galkina E, Thatte J, Dabak V, Williams MB, Ley K, Braciale TJ (2005) Preferential migration of effector CD8+ T cells into the interstitium of the normal lung. J Clin Invest 115:3473–3483

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Castellino F, Huang AY, Altan-Bonnet G, Stoll S, Scheinecker C, Germain RN (2006) Chemokines enhance immunity by guiding naive CD8+ T cells to sites of CD4+ T cell-dendritic cell interaction. Nature 440:890–895

    Article  CAS  PubMed  Google Scholar 

  14. Leveson-Gower DB, Sega EI, Kalesnikoff J, Florek M, Pan Y, Pierini A, Galli SJ, Negrin RS (2013) Mast cells suppress murine GVHD in a mechanism independent of CD4+ CD25+ regulatory T cells. Blood 122:3659–3665

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Seo S, Boeckh M (2013) Clinical cytomegalovirus research: hematopoietic cell transplantation. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, Volume II, Chapter 16. Caister Academic Press, Norfolk, pp 335–351

    Google Scholar 

  16. Holtappels R, Ebert S, Podlech J, Fink A, Böhm V, Lemmermann NA, Freitag K, Renzaho A, Thomas D, Reddehase MJ (2013) Murine model for cytoimmunotherapy of CMV disease after haematopoietic cell transplantation. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, Volume II, Chapter 17. Caister Academic Press, Norfolk, pp 352–379

    Google Scholar 

  17. Reddehase MJ, Weiland F, Münch K, Jonjic S, Lüske A, Koszinowski UH (1985) Interstitial murine cytomegalovirus pneumonia after irradiation: characterization of cells that limit viral replication during established infection of the lungs. J Virol 55:264–273

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Riddell SR, Watanabe KS, Goodrich JM, Li CR, Agha ME, Greenberg PD (1992) Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones. Science 257:238–241

    Article  CAS  PubMed  Google Scholar 

  19. Steffens HP, Kurz S, Holtappels R, Reddehase MJ (1998) Preemptive CD8 T-cell immunotherapy of acute cytomegalovirus infection prevents lethal disease, limits the burden of latent viral genomes, and reduces the risk of virus recurrence. J Virol 72:1797–1804

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Podlech J, Holtappels R, Wirtz N, Steffens HP, Reddehase MJ (1998) Reconstitution of CD8 T cells is essential for the prevention of multiple-organ cytomegalovirus histopathology after bone marrow transplantation. J Gen Virol 79:2099–2104

    CAS  PubMed  Google Scholar 

  21. Peggs KS, Verfuerth S, Pizzey A, Khan N, Guiver M, Moss PA, Mackinnon S (2003) Adoptive cellular therapy for early cytomegalovirus infection after allogeneic stem-cell transplantation with virus-specific T-cell lines. Lancet 362:1375–1377

    Article  PubMed  Google Scholar 

  22. Cobbold M, Khan N, Pourgheysari B, Tauro S, McDonald D, Osman H, Assenmacher M, Billingham L, Steward C, Crawley C, Olavarria E, Goldman J, Chakraverty R, Mahendra P, Craddock C, Moss PA (2005) Adoptive transfer of cytomegalovirus-specific CTL to stem cell transplant patients after selection by HLA-peptide tetramers. J Exp Med 202:379–386

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Feuchtinger T, Opherk K, Bethge WA, Topp MS, Schuster FR, Weissinger EM, Mohty M, Or R, Maschan M, Schumm M, Hamprecht K, Handgretinger R, Lang P, Einsele H (2010) Adoptive transfer of pp65-specific T cells for the treatment of chemorefractory cytomegalovirus disease or reactivation after haploidentical and matched unrelated stem cell transplantation. Blood 116:4360–4367

    Article  CAS  PubMed  Google Scholar 

  24. Schmitt A, Tonn T, Busch DH, Grigoleit GU, Einsele H, Odendahl M, Germeroth L, RinghoVer M, RinghoVer S, Wiesneth M, Greiner J, Michel D, Mertens T, Rojewski M, Marx M, von Harsdorf S, Döhner H, Seifried E, Bunjes D, Schmitt M (2011) Adoptive transfer and selective reconstitution of streptamer-selected cytomegalovirus-specific CD8+ T cells leads to virus clearance in patients after allogeneic peripheral blood stem cell transplantation. Transfusion 51:591–599

    Article  CAS  PubMed  Google Scholar 

  25. Holtappels R, Böhm V, Podlech J, Reddehase MJ (2008) CD8 T-cell-based immunotherapy of cytomegalovirus infection: “proof of concept” provided by the murine model. Med Microbiol Immunol 197:125–134

    Article  PubMed  Google Scholar 

  26. Ebert S, Podlech J, Gillert-Marien D, Gergely KM, Büttner JK, Fink A, Freitag K, Thomas D, Reddehase MJ, Holtappels R (2012) Parameters determining the efficacy of adoptive CD8 T-cell therapy of cytomegalovirus infection. Med Microbiol Immunol 201:527–539

    Article  PubMed  Google Scholar 

  27. Ebert S, Becker M, Lemmermann NA, Büttner JK, Michel A, Taube C, Podlech J, Böhm V, Freitag K, Thomas D, Holtappels R, Reddehase MJ, Stassen M (2014) Mast cells expedite control of pulmonary murine cytomegalovirus infection by enhancing the recruitment of protective CD8 T cells to the lungs. PLoS Pathog 10:e1004100

    Article  PubMed Central  PubMed  Google Scholar 

  28. Becker M, Lemmermann NA, Ebert S, Baars P, Renzaho A, Podlech J, Stassen M, Reddehase MJ (2014) Mast cells as rapid innate sensors of cytomegalovirus by TLR3/TRIF signaling-dependent and -independent mechanisms. Cell Mol Immunol. doi:10.1038/cmi.2014.73

    PubMed  Google Scholar 

  29. Podlech J, Holtappels R, Pahl-Seibert MF, Steffens HP, Reddehase MJ (2000) Murine model of interstitial cytomegalovirus pneumonia in syngeneic bone marrow transplantation: persistence of protective pulmonary CD8-T-cell infiltrates after clearance of acute infection. J Virol 74:7496–7507

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Balthesen M, Messerle M, Reddehase MJ (1993) Lungs are a major organ site of cytomegalovirus latency and recurrence. J Virol 67:5360–5366

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Kurz S, Steffens HP, Mayer A, Harris JR, Reddehase MJ (1997) Latency versus persistence or intermittent recurrences: evidence for a latent state of murine cytomegalovirus in the lungs. J Virol 71:2980–2987

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Kurz SK, Rapp M, Steffens HP, Grzimek NK, Schmalz S, Reddehase MJ (1999) Focal transcriptional activity of murine cytomegalovirus during latency in the lungs. J Virol 73:482–494

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Kurz SK, Reddehase MJ (1999) Patchwork pattern of transcriptional reactivation in the lungs indicates sequential checkpoints in the transition from murine cytomegalovirus latency to recurrence. J Virol 73:8612–8622

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Grzimek NK, Dreis D, Schmalz S, Reddehase MJ (2001) Random, asynchronous, and asymmetric transcriptional activity of enhancer-flanking major immediate-early genes ie1/3 and ie2 during murine cytomegalovirus latency in the lungs. J Virol 75:2692–2705

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Marquardt A, Halle S, Seckert CK, Lemmermann NA, Veres TZ, Braun A, Maus UA, Förster R, Reddehase MJ, Messerle M, Busche A (2011) Single cell detection of latent cytomegalovirus reactivation in host tissue. J Gen Virol 92:1279–1291

    Article  CAS  PubMed  Google Scholar 

  36. Holtappels R, Pahl-Seibert MF, Thomas D, Reddehase MJ (2000) Enrichment of immediate-early 1 (m123/pp89) peptide-specific CD8 T cells in a pulmonary CD62L(lo) memory-effector cell pool during latent murine cytomegalovirus infection of the lungs. J Virol 74:11495–11503

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Seckert CK, Griessl M, Büttner JK, Scheller S, Simon CO, Kropp KA, Renzaho A, Kühnapfel B, Grzimek NK, Reddehase MJ (2012) Viral latency drives ‘memory inflation’: a unifying hypothesis linking two hallmarks of cytomegalovirus infection. Med Microbiol Immunol 201:551–566

    Article  PubMed  Google Scholar 

  38. Lyon MF, Glenister PH (1982) A new allele sash (Wsh) at the W-locus and a spontaneous recessive lethal in mice. Genet Res 39:315–322

    Article  CAS  PubMed  Google Scholar 

  39. Grimbaldeston MA, Chen CC, Piliponsky AM, Tsai M, Tam SY, Galli SJ (2005) Mast cell-deficient W-sash c-kit mutant Kit W-sh/W-sh mice as a model for investigating mast cell biology in vivo. Am J Pathol 167:835–848

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Sacher T, Jordan S, Mohr CA, Vidy A, Weyn AM, Ruszics Z, Koszinowski UH (2008) Conditional gene expression systems to study herpesvirus biology in vivo. Med Microbiol Immunol 197:269–276

    Article  CAS  PubMed  Google Scholar 

  41. Sacher T, Podlech J, Mohr CA, Jordan S, Ruzsics Z, Reddehase MJ, Koszinowski UH (2008) The major virus-producing cell type during murine cytomegalovirus infection, the hepatocyte, is not the source of virus dissemination in the host. Cell Host Microbe 3:263–272

    Article  CAS  PubMed  Google Scholar 

  42. Scholten J, Hartmann K, Gerbaulet A, Krieg T, Muller W, Testa G, Roers A (2008) Mast cell-specific Cre/loxP-mediated recombination in vivo. Transgenic Res 17:307–315

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Francis H, Meininger CJ (2010) A review of mast cells and liver disease: what have we learned? Dig Liver Dis 42:529–536

    Article  CAS  PubMed  Google Scholar 

  44. Collington SJ, Williams TJ (2011) Weller CL (2011) Mechanisms underlying the localisation of mast cells in tissues. Trends Immunol 32:478–485

    Article  CAS  PubMed  Google Scholar 

  45. Böhm V, Podlech J, Thomas D, Deegen P, Pahl-Seibert MF, Lemmermann NA, Grzimek NK, Oehrlein-Karpi SA, Reddehase MJ, Holtappels R (2008) Epitope-specific in vivo protection against cytomegalovirus disease by CD8 T cells in the murine model of preemptive immunotherapy. Med Microbiol Immunol 197:135–144

    Article  PubMed  Google Scholar 

  46. Adler B, Sinzger C (2013) Cytomegalovirus interstrain variance in cell type tropism. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, Volume I, Chapter 17. Caister Academic Press, Norfolk, pp 297–321

    Google Scholar 

  47. Davison AJ, Holton M, Dolan A, Dargan DJ, Gatherer D, Hayward GS (2013) Comparative genomics of primate cytomegaloviruses. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, Volume I, Chapter 1. Caister Academic Press, Norfolk, pp 1–22

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft, Clinical Research Group KFO 183 (S.E., M.J.R., and N.A.W.) and Priority Program SPP1394, individual project STA 984/4-1 (MS). NAWL received intramural funding from the young investigator program MAIFOR of the University Medical Center Mainz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niels A. W. Lemmermann.

Additional information

This article is part of the Special Issue on Cytomegalovirus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podlech, J., Ebert, S., Becker, M. et al. Mast cells: innate attractors recruiting protective CD8 T cells to sites of cytomegalovirus infection. Med Microbiol Immunol 204, 327–334 (2015). https://doi.org/10.1007/s00430-015-0386-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-015-0386-1

Keywords

Navigation