Skip to main content
Log in

Rubella virus perturbs autophagy

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Autophagy is a cellular catabolic process implicated in numerous physiological processes and pathological conditions, including infections. Viruses have evolved different strategies to modulate the autophagic process. Since the effects of rubella virus (RV) on autophagy have not yet been reported, we evaluated the autophagic activity in the Statens Seruminstitut Rabbit Cornea cell line infected with the To336 strain of RV. Our results showed that RV lowered the levels of microtubule-associated protein 1 light chain 3 B-II (LC3B-II) and the autophagy-related gene 12–autophagy-related gene 5 conjugate, inhibited the autophagic flux, suppressed the intracellular redistribution of LC3B, decreased both the average number and the size of autophagosomes per cell and impeded the formation of acidic vesicular organelles. Induction of autophagy by using rapamycin decreased both the viral yields and the apoptotic rates of infected cultures. Besides its cytoprotective effects, autophagy furnishes an important antiviral mechanism, inhibition of which may reorchestrate intracellular environment so as to better serve the unique requirements of RV replication. Together, our observations suggest that RV utilizes a totally different strategy to cope with autophagy than that evolved by other positive-stranded RNA viruses, and there is considerable heterogeneity among the members of the Togaviridae family in terms of their effects on the cellular autophagic cascade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hobman T, Chantler J (2007) Rubella virus. In: Knipe DM, Howley PM (eds) Fields virology, 5th edn. Lippincott Williams and Wilkins, Philadelphia, pp 1070–1100

    Google Scholar 

  2. Lee JY, Bowden DS (2000) Rubella virus replication and links to teratogenicity. Clin Microbiol Rev 13:571–587

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Frey TK (1994) Molecular biology of rubella virus. Adv Virus Res 44:69–160

    Article  PubMed  CAS  Google Scholar 

  4. Lee JY, Bowden DS, Marshall JA (1996) Membrane junctions associated with rubella virus infected cells. J Submicrosc Cytol Pathol 28:101–108

    PubMed  CAS  Google Scholar 

  5. Pugachev KV, Frey TK (1998) Rubella virus induces apoptosis in culture cells. Virology 250:359–370

    Article  PubMed  CAS  Google Scholar 

  6. Megyeri K, Berencsi K, Halazonetis TD, Prendergast GC, Gri G, Plotkin SA, Rovera G, Gönczöl E (1999) Involvement of a p53-dependent pathway in rubella virus-induced apoptosis. Virology 259:74–84

    Article  PubMed  CAS  Google Scholar 

  7. Buzás K, Miczák A, Degré M, Megyeri K (2004) Rubella virus infection dysregulates the pattern of p63 expression. APMIS 112:656–662

    Article  PubMed  Google Scholar 

  8. Lee JY, Marshall JA, Bowden DS (1999) Localization of rubella virus core particles in Vero cells. Virology 265:110–119

    Article  PubMed  CAS  Google Scholar 

  9. Baron MD, Ebel T, Suomalainen M (1992) Intracellular transport of rubella virus structural proteins expressed from cloned cDNA. J Gen Virol 73:1073–1086

    Article  PubMed  CAS  Google Scholar 

  10. Shi J, Luo H (2012) Interplay between the cellular autophagy machinery and positive-stranded RNA viruses. Acta Biochim Biophys Sin 44:375–384

    Article  PubMed  CAS  Google Scholar 

  11. Dong X, Levine B (2013) Autophagy and viruses: adversaries or allies? J Innate Immun 5:480–493

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Yang Z, Klionsky DJ (2010) Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol 22:124–131

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Sarkar S (2013) Regulation of autophagy by mTOR-dependent and mTOR-independent pathways: autophagy dysfunction in neurodegenerative diseases and therapeutic application of autophagy enhancers. Biochem Soc Trans 41:1103–1130

    Article  PubMed  CAS  Google Scholar 

  14. Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147:728–741

    Article  PubMed  CAS  Google Scholar 

  15. Hayashi-Nishino M, Fujita N, Noda T, Yamaguchi A, Yoshimori T, Yamamoto A (2010) Electron tomography reveals the endoplasmic reticulum as a membrane source for autophagosome formation. Autophagy 6:301–303

    Article  PubMed  CAS  Google Scholar 

  16. Hamasaki M, Shibutani ST, Yoshimori T (2013) Up-to-date membrane biogenesis in the autophagosome formation. Curr Opin Cell Biol 25(4):455–460

    Article  PubMed  CAS  Google Scholar 

  17. Fujita N, Hayashi-Nishino M, Fukumoto H, Omori H, Yamamoto A, Noda T, Yoshimori T (2008) An Atg4B mutant hampers the lipidation of LC3 paralogues and causes defects in autophagosome closure. Mol Biol Cell 19:4651–4659

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Boyle KB, Randow F (2013) The role of ‘eat-me’ signals and autophagy cargo receptors in innate immunity. Curr Opin Microbiol 16:339–348

    Article  PubMed  CAS  Google Scholar 

  19. Schreiber A, Peter M (2014) Substrate recognition in selective autophagy and the ubiquitin–proteasome system. Biochim Biophys Acta 1843:163–181

    Article  PubMed  CAS  Google Scholar 

  20. Deretic V (2011) Autophagy in immunity and cell-autonomous defense against intracellular microbes. Immunol Rev 240:92–104

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Buchkovich NJ, Yu Y, Zampieri CA, Alwine JC (2008) The TORrid affairs of viruses: effects of mammalian DNA viruses on the PI3K-Akt-mTOR signalling pathway. Nat Rev Microbiol 6:266–275

    Article  PubMed  PubMed Central  Google Scholar 

  22. Deretic V, Saitoh T, Akira S (2013) Autophagy in infection, inflammation and immunity. Nat Rev Immunol 13:722–737

    Article  PubMed  CAS  Google Scholar 

  23. Kudchodkar SB, Levine B (2009) Viruses and autophagy. Rev Med Virol 19:359–378

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Rasband WS (1997–2012) ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA. http://imagej.nih.gov/ij/

  25. Mironova EV, Evstratova AA, Antonov SM (2007) A fluorescence vital assay for the recognition and quantification of excitotoxic cell death by necrosis and apoptosis using confocal microscopy on neurons in culture. J Neurosci Methods 163:1–8

    Article  PubMed  Google Scholar 

  26. Phillips CA, Melnick JL, Burkhardt M (1966) Isolation, propagation and neutralization of rubella virus in cultures of rabbit cornea (SIRC) cells. Proc Soc Exp Biol Med 122:783–786

    Article  PubMed  CAS  Google Scholar 

  27. Taylor MP, Kirkegaard K (2007) Modification of cellular autophagy protein LC3 by poliovirus. J Virol 81:12543–12553

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Wong J, Zhang J, Si X, Gao G, Mao I, McManus BM, Luo H (2008) Autophagosome supports coxsackievirus B3 replication in host cells. J Virol 82:9143–9153

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Klein KA, Jackson WT (2011) Human rhinovirus 2 induces the autophagic pathway and replicates more efficiently in autophagic cells. J Virol 85:9651–9654

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Huang SC, Chang CL, Wang PS, Tsai Y, Liu HS (2009) Enterovirus 71-induced autophagy detected in vitro and in vivo promotes viral replication. J Med Virol 81:1241–1252

    Article  PubMed  CAS  Google Scholar 

  31. Shrivastava S, Bhanja Chowdhury J, Steele R, Ray R, Ray RB (2012) Hepatitis C virus upregulates Beclin1 for induction of autophagy and activates mTOR signaling. J Virol 86:8705–8712

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Lee YR, Lei HY, Liu MT, Wang JR, Chen SH, Jiang-Shieh YF, Lin YS, Yeh TM, Liu CC, Liu HS (2008) Autophagic machinery activated by dengue virus enhances virus replication. Virology 374:240–248

    Article  PubMed  CAS  Google Scholar 

  33. Li JK, Liang JJ, Liao CL, Lin YL (2012) Autophagy is involved in the early step of Japanese encephalitis virus infection. Microbes Infect 14:159–168

    Article  PubMed  CAS  Google Scholar 

  34. Joubert PE, Werneke S, de la Calle C, Guivel-Benhassine F, Giodini A, Peduto L, Levine B, Schwartz O, Lenschow D, Albert ML (2012) Chikungunya-induced cell death is limited by ER and oxidative stress-induced autophagy. Autophagy 8:1261–1263

    Article  PubMed  CAS  Google Scholar 

  35. Joubert PE, Werneke SW, de la Calle C, Guivel-Benhassine F, Giodini A, Peduto L, Levine B, Schwartz O, Lenschow DJ, Albert ML (2012) Chikungunya virus-induced autophagy delays caspase-dependent cell death. J Exp Med 209:1029–1047

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Krejbich-Trotot P, Gay B, Li-Pat-Yuen G, Hoarau JJ, Jaffar-Bandjee MC, Briant L, Gasque P, Denizot M (2011) Chikungunya triggers an autophagic process which promotes viral replication. Virol J 8:432

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Abraham R, Mudaliar P, Padmanabhan A, Sreekumar E (2013) Induction of cytopathogenicity in human glioblastoma cells by chikungunya virus. PLoS One 8:e75854

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Rana J, Sreejith R, Gulati S, Bharti I, Jain S, Gupta S (2013) Deciphering the host-pathogen protein interface in chikungunya virus-mediated sickness. Arch Virol 158:1159–1172

    Article  PubMed  CAS  Google Scholar 

  39. Orvedahl A, Sumpter R Jr, Xiao G, Ng A, Zou Z, Tang Y, Narimatsu M, Gilpin C, Sun Q, Roth M, Forst CV, Wrana JL, Zhang YE, Luby-Phelps K, Xavier RJ, Xie Y, Levine B (2011) Image-based genome-wide siRNA screen identifies selective autophagy factors. Nature 480:113–117

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Orvedahl A, MacPherson S, Sumpter R Jr, Tallóczy Z, Zou Z, Levine B (2010) Autophagy protects against Sindbis virus infection of the central nervous system. Cell Host Microbe 7:115–127

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Sumpter R Jr, Levine B (2011) Selective autophagy and viruses. Autophagy 7:260–265

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Cooray S, Jin L, Best JM (2005) The involvement of survival signaling pathways in rubella-virus induced apoptosis. Virol J 2:1

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bhaskar PT, Hay N (2007) The two TORCs and Akt. Dev Cell 12:487–502

    Article  PubMed  CAS  Google Scholar 

  44. Bracho-Valdés I, Moreno-Alvarez P, Valencia-Martínez I, Robles-Molina E, Chávez-Vargas L, Vázquez-Prado J (2011) mTORC1- and mTORC2-interacting proteins keep their multifunctional partners focused. IUBMB Life 63:896–914

    Article  PubMed  Google Scholar 

  45. Fenton TR, Gout IT (2011) Functions and regulation of the 70 kDa ribosomal S6 kinases. Int J Biochem Cell Biol 43:47–59

    Article  PubMed  CAS  Google Scholar 

  46. Bincoletto C, Bechara A, Pereira GJ, Santos CP, Antunes F, Peixoto da-Silva J, Muler M, Gigli RD, Monteforte PT, Hirata H, Jurkiewicz A, Smaili SS (2013) Interplay between apoptosis and autophagy, a challenging puzzle: new perspectives on antitumor chemotherapies. Chem Biol Interact 206:279–288

    Article  PubMed  CAS  Google Scholar 

  47. Di Bartolomeo S, Nazio F, Cecconi F (2010) The role of autophagy during development in higher eukaryotes. Traffic 11:1280–1289

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Gyöngyi Ábrahám for expert technical assistance. This work was supported by the TÁMOP-4.2.2/B-10/1-2010-0012 and TÁMOP4.2.2.A-11/1/KONV-2012-0035 programs of the Hungarian National Development Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klára Megyeri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pásztor, K., Orosz, L., Seprényi, G. et al. Rubella virus perturbs autophagy. Med Microbiol Immunol 203, 323–331 (2014). https://doi.org/10.1007/s00430-014-0340-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-014-0340-7

Keywords

Navigation