Skip to main content

Advertisement

Log in

Acute restraint stress decreases c-fos immunoreactivity in hilar mossy cells of the adult dentate gyrus

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Although a great deal of information is available about the circuitry of the mossy cells (MCs) of the dentate gyrus (DG) hilus, their activity in vivo is not clear. The immediate early gene c-fos can be used to gain insight into the activity of MCs in vivo, because c-fos protein expression reflects increased neuronal activity. In prior work, it was identified that control rats that were perfusion-fixed after removal from their home cage exhibited c-fos immunoreactivity (ir) in the DG in a spatially stereotyped pattern: ventral MCs and dorsal granule cells (GCs) expressed c-fos protein (Duffy et al., Hippocampus 23:649–655, 2013). In this study, we hypothesized that restraint stress would alter c-fos-ir, because MCs express glucocorticoid type 2 receptors and the DG is considered to be involved in behaviors related to stress or anxiety. We show that acute restraint using a transparent nose cone for just 10 min led to reduced c-fos-ir in ventral MCs compared to control rats. In these comparisons, c-fos-ir was evaluated 30 min after the 10 min-long period of restraint, and if evaluation was later than 30 min c-fos-ir was no longer suppressed. Granule cells (GCs) also showed suppressed c-fos-ir after acute restraint, but it was different than MCs, because the suppression persisted for over 30 min after the restraint. We conclude that c-fos protein expression is rapidly and transiently reduced in ventral hilar MCs after a brief period of restraint, and suppressed longer in dorsal GCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Acsady L, Katona I, Martinez-Guijarro FJ, Buzsaki G, Freund TF (2000) Unusual target selectivity of perisomatic inhibitory cells in the hilar region of the rat hippocampus. J Neurosci 20:6907–6919

    CAS  PubMed  Google Scholar 

  • Amaral D (1978) A Golgi study of cell types in the hilar region of the hippocampus in the rat. J Comp Neurol 15:851–914

    Article  Google Scholar 

  • Amaral DG, Scharfman HE, Lavenex P (2007) The dentate gyrus: fundamental neuroanatomical organization (dentate gyrus for dummies). Prog Brain Res 163:3–22

    Article  PubMed  PubMed Central  Google Scholar 

  • Baille-Le Crom V, Collombet JM, Burckhart MF, Foquin A, Pernot-Marino I, Rondouin G, Lallement G (1996) Time course and regional expression of c-fos and HSP 70 in hippocampus and piriform cortex following soman-induced seizures. J Neurosci Res 45:513–524

    Article  CAS  PubMed  Google Scholar 

  • Bain M, Dwyer S, Rusak B (2004) Restraint stress affects hippocampal cell proliferation differently in rats and mice. Neurosci Lett 368:7–10

    Article  CAS  PubMed  Google Scholar 

  • Barouk S, Hintz T, Li P, Duffy A, Maclusky N, Scharfman H (2011) 17β-estradiol increases astrocytic vascular endothelial growth factor (VEGF) in adult female rat hippocampus. Endocrinology 152:1745–1751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blackstad JB, Osen KK, Scharfman HE, Storm-Mathisen J, Blackstad TW, Leergaard TB (2016) Observations on hippocampal mossy cells in mink (neovison vison) with special reference to dendrites ascending to the granular and molecular layers. Hippocampus 26:229–245

    Article  PubMed  Google Scholar 

  • Buckmaster PS, Jongen-Relo AL (1999) Highly specific neuron loss preserves lateral inhibitory circuits in the dentate gyrus of kainate-induced epileptic rats. J Neurosci 19:9519–9529

    CAS  PubMed  Google Scholar 

  • Buckmaster P, Wenzel H, Kunkel D, Schwartzkroin P (1996) Axon arbors and synaptic connections of hippocampal mossy cells in the rat in vivo. J Comp Neurol 366:271–292

    Article  CAS  PubMed  Google Scholar 

  • Buzsaki G, Eidelberg E (1981) Commissural projection to the dentate gyrus of the rat: evidence for feed-forward inhibition. Brain Res 230:346–350

    Article  CAS  PubMed  Google Scholar 

  • Celio MR (1990) Calbindin D-28 k and parvalbumin in the rat nervous system. Neuroscience 35:375–475

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury GM, Fujioka T, Nakamura S (2000) Induction and adaptation of fos expression in the rat brain by two types of acute restraint stress. Brain Res Bull 52:171–182

    Article  CAS  PubMed  Google Scholar 

  • Collaco-Moraes Y, De Belleroche J (1995) Differential temporal patterns of expression of immediate early genes in cerebral cortex induced by intracerebral excitotoxin injection: sensitivity to dexamethasone and MK-801. Neuropharmacology 34:521–531

    Article  CAS  PubMed  Google Scholar 

  • Conrad C, McEwen B (2000) Acute stress increases neuropeptide Y mRNA within the arcuate nucleus and hilus of the dentate gyrus. Mol Brain Res 79:102–109

    Article  CAS  PubMed  Google Scholar 

  • de Kloet ER, Molendijk ML (2016) Coping with the forced swim stressor: towards understanding an adaptive mechanism. Neural Plasticity 2016:6503162

    Article  PubMed  PubMed Central  Google Scholar 

  • Deller T, Katona I, Cozzari C, Frotscher M, Freund TF (1999) Cholinergic innervation of mossy cells in the rat fascia dentata. Hippocampus 9:314–320

    Article  CAS  PubMed  Google Scholar 

  • Douglas RM, McNaughton BL, Goddard GV (1983) Commissural inhibition and facilitation of granule cell discharge in fascia dentata. J Comp Neurol 219:285–294

    Article  CAS  PubMed  Google Scholar 

  • Dragunow M, Faull R (1989) The use of c-fos as a metabolic marker in neuronal pathway tracing. J Neurosci Methods 29:261–265

    Article  CAS  PubMed  Google Scholar 

  • Duffy AM, Schaner MJ, Chin J, Scharfman HE (2013) Expression of c-fos in hilar mossy cells of the dentate gyrus in vivo. Hippocampus 23:649–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fa M, Xia L, Anunu R, Kehat O, Kriebel M, Volkmer H, Richter-Levin G (2014) Stress modulation of hippocampal activity–spotlight on the dentate gyrus. Neurobiol Learn Mem 112:53–60

    Article  PubMed  Google Scholar 

  • Fevurly RD, Spencer RL (2004) Fos expression is selectively and differentially regulated by endogenous glucocorticoids in the paraventricular nucleus of the hypothalamus and the dentate gyrus. J Neuroendocrinol 16:970–979

    Article  CAS  PubMed  Google Scholar 

  • Frotscher M, Seress L, Schwerdtfeger WK, Buhl E (1991) The mossy cells of the fascia dentata: a comparative study of their fine structure and synaptic connections in rodents and primates. J Comp Neurol 312:145–163

    Article  CAS  PubMed  Google Scholar 

  • Fujikawa T, Soya H, Fukuoka H, Alam K, Yoshizato H, McEwen B, Nakashima K (2000) A biphasic regulation of receptor mRNA expressions for growth hormone, glucocorticoid and mineralocorticoid in the rat dentate gyrus during acute stress. Brain Res 874:186–193

    Article  CAS  PubMed  Google Scholar 

  • Herman J, Watson S (1995) Stress regulation of mineralocorticoid receptor heteronuclear RNA in rat hippocampus. Brain Res 677:243–249

    Article  CAS  PubMed  Google Scholar 

  • Hoffman AN, Anouti DP, Lacagnina MJ, Nikulina EM, Hammer RP Jr, Conrad CD (2013) Experience-dependent effects of context and restraint stress on corticolimbic c-fos expression. Stress 16:587–591

    Article  PubMed  PubMed Central  Google Scholar 

  • Hölscher C (1999) Stress impairs performance in spatial water maze learning tasks. Behav Brain Res 100:225–235

    Article  PubMed  Google Scholar 

  • Hsu T-T, Lee C-T, Tai M-H, Lien C-C (2016) Differential recruitment of dentate gyrus interneuron types by commissural versus perforant pathways. Cereb Cortex 26:2715–2727

    Article  PubMed  Google Scholar 

  • Jiao Y, Nadler JV (2007) Stereological analysis of Glur2-immunoreactive hilar neurons in the pilocarpine model of temporal lobe epilepsy: correlation of cell loss with mossy fiber sprouting. Exp Neurol 205:569–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jinde S, Zsiros V, Jiang Z, Nakao K, Pickel J, Kohno K, Belforte JE, Nakazawa K (2012) Hilar mossy cell degeneration causes transient dentate granule cell hyperexcitability and impaired pattern separation. Neuron 76:1189–1200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kheirbek MA, Drew LJ, Burghardt NS, Costantini DO, Tannenholz L, Ahmari SE, Zeng H, Fenton AA, Hen R (2013) Differential control of learning and anxiety along the dorso-ventral axis of the dentate gyrus. Neuron 77:955–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laurberg S, Sorensen KE (1981) Associational and commissural collaterals of neurons in the hippocampal formation (hilus fasciae dentatae and subfield CA3). Brain Res 212:287–300

    Article  CAS  PubMed  Google Scholar 

  • Law J, Ibarguen-Vargas Y, Belzung C, Surget A (2016) Decline of hippocampal stress reactivity and neuronal ensemble coherence in a mouse model of depression. Psychoneuroendocrinology 67:113–123

    Article  CAS  PubMed  Google Scholar 

  • Le Gal La Salle G (1988) Long-lasting and sequential increase of c-fos oncoprotein expression in kainic acid-induced status epilepticus. Neurosci Lett 88:127–130

    Article  CAS  PubMed  Google Scholar 

  • Leranth C, Szeidemann Z, Hsu M, Buzsáki G (1996) AMPA receptors in the rat and primate hippocampus: a possible absence of glur2/3 subunits in most interneurons. Neuroscience 70:631–652

    Article  CAS  PubMed  Google Scholar 

  • McCloskey DP, Hintz TM, Pierce JP, Scharfman HE (2006) Stereological methods reveal the robust size and stability of ectopic hilar granule cells after pilocarpine-induced status epilepticus in the adult rat. Eur J Neurosci 24:2203–2210

    Article  PubMed  PubMed Central  Google Scholar 

  • McEwen BS, Nasca C, Gray JD (2016) Stress effects on neuronal structure: hippocampus, amygdala, and prefrontal cortex. Neuropsychopharmacology 41:3–23

    Article  CAS  PubMed  Google Scholar 

  • Mizukawa K, Takayama H, Sato H, Ota Z, Haba K, Ogawa N (1989) Alterations of muscarinic cholinergic receptors in the hippocampal formation of stressed rat: in vitro quantitative autoradiographic analysis. Brain Res 478:187–192

    Article  CAS  PubMed  Google Scholar 

  • Nativio P, Pascale E, Maffei A, Scaccianoce S, Passarelli F (2012) Effect of stress on hippocampal nociceptin expression in the rat. Stress 15:378–384

    Article  CAS  PubMed  Google Scholar 

  • Patel A, Bulloch K (2003) Type II glucocorticoid receptor immunoreactivity in the mossy cells of the rat and the mouse hippocampus. Hippocampus 13:59–66

    Article  PubMed  Google Scholar 

  • Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates. Elsevier Academic Press, New York

    Google Scholar 

  • Preston GA, Lyon TT, Yin Y, Lang JE, Solomon G, Annab L, Srinivasan DG, Alcorta DA, Barrett JC (1996) Induction of apoptosis by c-fos protein. Mol Cell Biol 16:211–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reul JM, de Kloet ER (1985) Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation. Endocrinology 117:2505–2511

    Article  CAS  PubMed  Google Scholar 

  • Reul JM, Collins A, Saliba RS, Mifsud KR, Carter SD, Gutierrez-Mecinas M, Qian X, Linthorst AC (2015) Glucocorticoids, epigenetic control and stress resilience. Neurobiol Stress 1:44–59

    Article  PubMed  Google Scholar 

  • Ribak CE, Seress L, Amaral DG (1985) The development, ultrastructure and synaptic connections of the mossy cells of the dentate gyrus. J Neurocytol 14:835–857

    Article  CAS  PubMed  Google Scholar 

  • Scharfman HE (1991) Dentate hilar cells with dendrites in the molecular layer have lower thresholds for synaptic activation by perforant path than granule cells. J Neurosci 11:1660–1673

    CAS  PubMed  Google Scholar 

  • Scharfman HE (1993) Characteristics of spontaneous and evoked EPSPs recorded from dentate spiny hilar cells in rat hippocampal slices. J Neurophysiol 70:742–757

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scharfman HE (1994) Evidence from simultaneous intracellular recordings in rat hippocampal slices that area CA3 pyramidal cells innervate dentate hilar mossy cells. J Neurophysiol 72:2167–2180

    CAS  PubMed  Google Scholar 

  • Scharfman HE (2016) The enigmatic mossy cell of the dentate gyrus. Nat Rev Neurosci 17:562–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scharfman HE, Myers CE (2012) Hilar mossy cells of the dentate gyrus: a historical perspective. Front Neural Circuits 6:106

    PubMed  Google Scholar 

  • Scharfman HE, Schwartzkroin PA (1989) Protection of dentate hilar cells from prolonged stimulation by intracellular calcium chelation. Science 246:257–260

    Article  CAS  PubMed  Google Scholar 

  • Scharfman HE, Sollas AL, Goodman JH (2002) Spontaneous recurrent seizures after pilocarpine-induced status epilepticus activate calbindin-immunoreactive hilar cells of the rat dentate gyrus. Neuroscience 111:71–81

    Article  CAS  PubMed  Google Scholar 

  • Sloviter RS (1991) Permanently altered hippocampal structure, excitability, and inhibition after experimental status epilepticus in the rat: the “dormant basket cell” hypothesis and its possible relevance to temporal lobe epilepsy. Hippocampus 1:41–66

    Article  CAS  PubMed  Google Scholar 

  • Soriano E, Frotscher M (1994) Mossy cells of the rat fascia dentata are glutamate-immunoreactive. Hippocampus 4:65–69

    Article  CAS  PubMed  Google Scholar 

  • Strange B, Witter M, Lein E, Moser E (2014) Functional organization of the hippocampal longitudinal axis. Nat Rev Neurosci 15:655–669

    Article  CAS  PubMed  Google Scholar 

  • Strowbridge BW, Schwartzkroin PA (1996) Transient potentiation of spontaneous EPSPs in rat mossy cells induced by depolarization of a single neurone. J Physiol 494(Pt 2):493–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tse Y-C, Lai C-H, Lai S-K, Liu J-X, Yung KKL, Shum DKY, Chan Y-S (2008) Developmental expression of NMDA and AMPA receptor subunits in vestibular nuclear neurons that encode gravity-related horizontal orientations. J Comp Neurol 508:343–364

    Article  CAS  PubMed  Google Scholar 

  • Volz F, Bock HH, Gierthmuehlen M, Zentner J, Haas CA, Freiman TM (2011) Stereologic estimation of hippocampal GluR2/3- and calretinin-immunoreactive hilar neurons (presumptive mossy cells) in two mouse models of temporal lobe epilepsy. Epilepsia 52:1579–1589

    Article  CAS  PubMed  Google Scholar 

  • Walling SG, Brown RA, Miyasaka N, Yoshihara Y, Harley CW (2012) Selective wheat germ agglutinin (wga) uptake in the hippocampus from the locus coeruleus of dopamine-beta-hydroxylase-wga transgenic mice. Front Behav Neurosci 6:23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wenzel HJ, Buckmaster PS, Anderson NL, Wenzel ME, Schwartzkroin PA (1997) Ultrastructural localization of neurotransmitter immunoreactivity in mossy cell axons and their synaptic targets in the rat dentate gyrus. Hippocampus 7:559–570

    Article  CAS  PubMed  Google Scholar 

  • Whisler RL, Chen M, Beiqing L, Carle KW (1997) Impaired induction of c-fos/c-jun genes and of transcriptional regulatory proteins binding distinct c-fos/c-jun promoter elements in activated human t cells during aging. Cell Immunol 175:41–50

    Article  CAS  PubMed  Google Scholar 

  • Yarom O, Maroun M, Richter-Levin G (2008) Exposure to forced swim stress alters local circuit activity and plasticity in the dentate gyrus of the hippocampus. Neural Plasticity 2008:194097

    Article  PubMed  PubMed Central  Google Scholar 

  • Zimmer LA, Ennis M, El-Etri M, Shipley MT (1997) Anatomical localization and time course of fos expression following soman-induced seizures. J Comp Neurol 378:468–481

    Article  CAS  PubMed  Google Scholar 

  • Zivin JA, Bartko JJ (1976) Statistics for disinterested scientists. Life Sci 18:15–26

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by NIH 090606, the Alzheimer’s Association, and the New York State Office of Mental Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen E. Scharfman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moretto, J.N., Duffy, Á.M. & Scharfman, H.E. Acute restraint stress decreases c-fos immunoreactivity in hilar mossy cells of the adult dentate gyrus. Brain Struct Funct 222, 2405–2419 (2017). https://doi.org/10.1007/s00429-016-1349-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-016-1349-z

Keywords

Navigation