Skip to main content
Log in

NADPH-diaphorase-positive neurons in the human inferior colliculus: morphology, distribution and clinical implications

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Using the nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) reaction with nitroblue tetrazolium, we provided a detailed investigation of the distribution, dimensional characteristics and morphology of NADPH-d-positive neurons in the three main subdivisions of the human inferior colliculus (IC): central nucleus, pericentral nucleus, and external nucleus. In accordance with their perikaryal diameter, dendritic and axonal morphology, these neurons were categorized as large (averaging up to 45 μm in diameter), medium (20–30 µm), small (13–16 µm) and very small (7–10 µm). Their morphological differences could contribute to varying functionality and processing capacity. Our results support the hypothesis that large and medium NADPH-d-positive cells represent projection neurons, while the small cells correspond to interneurons. Heretofore, the very small NADPH-d-positive neurons have not been described in any species. Their functions—and if they are, indeed, the smallest neurons in the IC of humans—remain to be clarified. Owing to their location, we posit that they are interneurons that connect the large NADPH-d-positive neurons and thereby serve as an anatomical substrate for information exchange and processing before feeding forward to higher brain centers. Our results also suggest that the broad distribution of nitric oxide (NO) synthesis in the human IC is closely tied to the neuromodulatory action of NO on collicular neurotransmitters such as GABA and glutamate, and to calcium-binding proteins such as parvalbumin. A deeper understanding of the relationship between NADPH-d-positive fibers in all IC connections and their co-localization with other neurotransmitters and calcium-binding proteins will assist in better defining the function of NO in the context of its interplay with the cerebral cortex, the sequelae of the aging process and neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

AQ:

Cerebral aqueduct

CN:

Central nucleus

CNS:

Central nervous system

dmCN:

Dorsomedial central nucleus

EN:

External nucleus

GABA:

Gamma-aminobutyric acid

IC:

Inferior colliculus

ICZ:

Intercollicular zone

mPN:

Medial pericentral nucleus

NADPH-d:

Nicotinamide adenine dinucleotide phosphate-diaphorase

NO:

Nitric oxide

NOS:

Nitric oxide synthase

PN:

Pericentral nucleus

References

  • Aitkin LM, Phillips SC (1984) The interconnections of the inferior colliculi through their commissure. J Comp Neurol 228:210–216

    Article  CAS  PubMed  Google Scholar 

  • Ayala YA, Malmierca MS (2013) Stimulus-specific adaptation and deviance detection in the inferior colliculus. Front Neural Circ 6:89. doi:10.3389/fncir.2012.00089

    Google Scholar 

  • Ayala YA, Perez-Gonzalez D, Duque D, Nelken I, Malmierca MS (2013) Frequency discrimination and stimulus deviance in the inferior colliculus and cochlear nucleus. Front Neural Circ 6:119. doi:10.3389/fncir.2012.00119

    Google Scholar 

  • Bakhos D, Villeuneuve A, Kim S, Hammoudi K, Hommet C (2015) Hearing loss and Alzheimer’s disease. Geriatr Psychol Neuropsychiatr Vieil 3:195–204. doi:10.1684/pnv.2015.0539

    Google Scholar 

  • Berkley KJ, Budell RJ, Blomqvist A, Bull M (1986) Output systems of the dorsal column nuclei in the cat. Brain Res 396(3):199–225

    Article  CAS  PubMed  Google Scholar 

  • Bledsoe SC, Shore SE, Guitton MJ (2003) Spatial representation of corticofugal input in the inferior colliculus: a multicontact silicon probe approach. Exp Brain Res 153:530–542

    Article  CAS  PubMed  Google Scholar 

  • Brown MC (2003) Audition. In: Squire LR, Bloom FE, McConnell SK, Roberts JL, Spitzer NC, Zigmond MJ (eds) Fundamental neuroscience. Academic Press, San Diego, pp 699–726

    Google Scholar 

  • Bruhwyler J, Chleide E, Liégeois JF, Carreer F (1993) Nitric oxide: a new messenger in the brain. Neurosci Biobehav Rev 17:373–384

    Article  CAS  PubMed  Google Scholar 

  • Brunso-Bechtold JK, Thompson GC, Masterton RB (1981) HRP study of the organization of auditory afferents ascending to central nucleus of inferior colliculus in cat. J Comp Neurol 197(4):705–722

    Article  CAS  PubMed  Google Scholar 

  • Budinger E, Heil P, Scheich H (2000) Functional organization of auditory cortex in the Mongolian gerbil (Meriones unguiculatus). IV. Connections with anatomically characterized subcortical structures. Eur J Neurosci 12:2452–2474

    Article  CAS  PubMed  Google Scholar 

  • Cacciaglia R, Escera C, Slabu L, Grimm S, Sanjuán A, Ventura-Campos N, Ávila C (2015) Involvement of the human midbrain and thalamus in auditory deviance detection. Neuropsychologia 68:51–58. doi:10.1016/j.neuropsychologia.2015.01.001

    Article  PubMed  Google Scholar 

  • Casseday JH, Fremouw T, Covey E (2002) The inferior colliculus: a hub for the central auditory system. In: Oertel D, Fay RR, Popper AN (eds) Springer handbook of auditory research, vol 15., Integrative functions in the mammalian auditory pathwaySpringer-Verlag, New York, pp 238–318

    Google Scholar 

  • Chernock ML, Larue DT, Winer JA (2004) A periodic network of neurochemical modules in the inferior colliculus. Hear Res 188(1–2):12–20

    Article  CAS  PubMed  Google Scholar 

  • Coote EJ, Rees A (2008) The distribution of nitric oxide synthase in the inferior colliculus of guinea pig. Neuroscience 154(1):218–225

    Article  CAS  PubMed  Google Scholar 

  • Covey E, Casseday JH (1986) Connectional basis for frequency representation in the nuclei of the lateral lemniscus of the bat Eptesicus fuscus. J Neurosci 6(10):2926–2940

    CAS  PubMed  Google Scholar 

  • De Felipe J (1993) A study of NADPH-diaphorase-positive axonal plexuses in the human temporal cortex. Brain Res 615:342–346

    Article  Google Scholar 

  • Dimova R, Vuillet J, Seite R (1980) Study of the rat neostriatum using a combined Golgi-electron microscope technique and serial sections. Neuroscience 5:1581–1596

    Article  CAS  PubMed  Google Scholar 

  • Druga R, Syka J (1993) NADPH-diaphorase activity in the central auditory structures of the rat. NeuroReport 4:999–1002

    Article  CAS  PubMed  Google Scholar 

  • Druga R, Syka J (2001) Effect of auditory cortex lesions on NADPH-diaphorase staining in the inferior colliculus of rat. NeuroReport 12:1555–1559

    Article  CAS  PubMed  Google Scholar 

  • Druga R, Syka J, Rajkowska G (1997) Projections of auditory cortex onto the inferior colliculus in the rat. Physiol Res 46:215–222

    CAS  PubMed  Google Scholar 

  • Dudzinski DM, Igarashi J, Greif D, Michel T (2006) The regulation and pharmacology of endothelial nitric oxide synthase. Annu Rev Pharmacol Toxicol 46:235–276

    Article  CAS  PubMed  Google Scholar 

  • Duque D, Ayala YA, Malmierca MS (2015) Deviance detection in auditory subcortical structures: what can we learn from neurochemistry and neural connectivity? Cell Tissue Res 361(1):215–232. doi:10.1007/s00441-015-2134-7

    Article  PubMed  Google Scholar 

  • Dzambazova E, Bocheva A, Landzhov B, Bozhilova-Pastirova A (2008) Effects of kyotorphin on NADPH-d reactive neurons in rats after cold stress. Compt Rend Acad Bulg Sci 61(5):661–666

    CAS  Google Scholar 

  • Dzambazova E, Landzhov B, Bocheva A, Bozhilova-Pastirova A (2011a) Effects of kyotorphin on NADPH-d reactive neurons in rat’s cerebral cortex after acute immobilization stress. Compt Rend Bulg Acad Sci 64(11):1779–1784

    CAS  Google Scholar 

  • Dzambazova E, Landzhov B, Bocheva A, Bozhilova-Pastirova A (2011b) Effects of d-kyotorphin on nociception and NADPH-d neurons in rat’s periaqueductal gray after immobilization stress. Amino Acids 41(4):937–944

    Article  CAS  PubMed  Google Scholar 

  • Edelstein L, Hinova-Palova D, Denaro FJ, Landzhov B, Malinova L, Minkov M, Paloff A, Ovtscharoff W (2012a) NADPH-diaphorase-positive neurons in the human claustrum. In: Society for Neuroscience, 42nd Annual Meeting, Abstract #895.20

  • Edelstein L, Hinova-Palova D, Landzhov B, Malinova L, Minkov M, Paloff A, Ovtscharoff W (2012b) Neuronal nitric oxide synthase immunoreactivity in the human claustrum: light- and electron microscopic investigation. In: Society for Neuroscience, 42nd Annual Meeting, Abstract #895.21

  • Egberongbe YI, Gentleman SM, Falkai P, Bogerts B, Polak JM, Roberts GW (1994) The distribution of nitric oxide synthase immunoreactivity in the human brain. Neuroscience 59(3):561–578

    Article  CAS  PubMed  Google Scholar 

  • Engle JR, Gray DT, Turner H, Udell JB, Recanzone GH (2014) Age-related neurochemical changes in the rhesus macaque inferior colliculus. Front Aging Neurosci 6:73. doi:10.3389/fnagi.2014.00073

    Article  PubMed  PubMed Central  Google Scholar 

  • Esplugues JV (2002) NO as a signaling molecule in the nervous system. Br J Pharmacol 135:1079–1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faye-Lund H, Osen KK (1985) Anatomy of the inferior colliculus in rat. Anat Embryol 171:1–20

    Article  CAS  PubMed  Google Scholar 

  • Foster NL, Mellott JG, Schofield BR (2014) Perineuronal nets and GABAergic cells in the inferior colliculus of guinea pigs. Front Neuroanat 7:53. doi:10.3389/fnana.2013.00053

    Article  PubMed  PubMed Central  Google Scholar 

  • Fredrich M, Reisch A, Illing RB (2009) Neuronal subtype identity in the rat auditory brainstem as defined by molecular profile and axonal projection. Exp Brain Res 195(2):241–260. doi:10.1007/s00221-009-1776-7

    Article  CAS  PubMed  Google Scholar 

  • Friauf E (2000) Development of chondroitin sulfate proteoglycans in the central auditory system of rats correlates with acquisition of mature properties. Audiol Neurootol 5(5):251–262

    Article  CAS  PubMed  Google Scholar 

  • Gao PP, Zhang JW, Cheng JS, Zhou IY, Wu EX (2014) The inferior colliculus is involved in deviant sound detection as revealed by BOLD fMRI. Neuroimage 91:220–227

    Article  PubMed  Google Scholar 

  • Geniec P, Morest DK (1971) The neuronal architecture of the human posterior colliculus. Acta Otolaryngol (Suppl) 295:1–33

    CAS  Google Scholar 

  • Glendenning KK, Masterton RB (1983) Acoustic chiasm: efferent projections of the lateral superior olive. J Neurosci 3(8):1521–1537

    CAS  PubMed  Google Scholar 

  • Glendenning KK, Baker BN, Hutson KA, Masterton RB (1992) Acoustic chiasm V: inhibition and excitation in the ipsilateral and contralateral projections of LSD. J Comp Neurol 319:100–122

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Hernandez T, Mantolan-Sarmiento B, Gonzalez-Gonzalez B, Perez-Gonzalez H (1996) Sources of GABAergic input to the inferior colliculus of the rat. J Comp Neurol 372:309–326

    Article  CAS  PubMed  Google Scholar 

  • Guardiani E, Zalewski C, Brewer C, Merideth M, Introne W, Smith AC, Gordon L, Gahl W, Kim HJ (2011) Otologic and audiologic manifestations of Hutchinson-Gilford progeria syndrome. Laryngoscope 121:2250–2255. doi:10.1002/lary.22151

    Article  PubMed  PubMed Central  Google Scholar 

  • Guix FX, Uribesalgo I, Coma M, Munoz FJ (2005) The physiology and pathophysiology of nitric oxide in the brain. Prog Neurobiol 76:126–152

    Article  CAS  PubMed  Google Scholar 

  • Gulati K, Joshi JC, Ray A (2015) Recent advances in stress research: focus on nitric oxide. Eur J Pharmacol 765:406–414. doi:10.1016/j.ejphar.2015.08.055

    Article  CAS  PubMed  Google Scholar 

  • Herbert H, Aschoff A, Ostwald J (1991) Topography of projections from the auditory cortex to the inferior colliculus in the rat. J Comp Neurol 304:103–122

    Article  CAS  PubMed  Google Scholar 

  • Hilbig H, Nowack S, Boeckler K, Bidmon H-J, Zilles K (2007) Characterization of neuronal subsets surrounded by perineuronal nets in the rhesus auditory brainstem. J Anat 210(5):507–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hinova-Palova DV, Dimova RN, Ivanov DP (1989) Identification of small neurons (“dwarf cells”) in the claustrum of the cat. Light and electron microscopic observations. Verb Anat Ges 82 (Anat Anz Suppl 164):883–884

  • Hinova-Palova DV, Paloff AM, Christova T, Ovtscharoff W (1997) Topographical distribution of NADPH-diaphorase positive neurons in the cat’s claustrum. Eur J Morphol 35:105–116

    Article  CAS  PubMed  Google Scholar 

  • Hinova-Palova DV, Edelstein L, Landzhov B, Minkov M, Malinova L, Hristov S, Denaro FJ, Alexandrov A, Kiriakova T, Brainova I, Paloff A, Ovtscharoff W (2014) Topographical distribution and morphology of NADPH-diaphorase-stained neurons in the human claustrum. Front Syst Neurosci 8:96. doi:10.3389/fnsys.2014.00096

    Article  PubMed  PubMed Central  Google Scholar 

  • Holstein GR, Friedrich VL, Martinelli GP (2001) Monoclonal l-citrulline immunostaining reveals nitric oxide-producing vestibular neurons. Ann NY Acad Sci 942:65–78. doi:10.1111/j.1749-6632.2001.tb03736.x

    Article  CAS  PubMed  Google Scholar 

  • Hudspeth AJ (2000) Hearing. In: Kandel ER, Schwartz JH, Jessel TM (eds) Principles of neural science. Mac-Graw Hill Companies, New York, pp 590–613

    Google Scholar 

  • Huffman RF, Henson OW (1990) The descending auditory pathway and acousticomotor systems: connections with the inferior colliculus. Brain Res Brain Res Rev 15:295–323

    Article  CAS  PubMed  Google Scholar 

  • Hutson KA, Glendenning KK, Masterton RB (1991) Acoustic chiasm. IV: eight midbrain decussations of the auditory system in the cat. J Comp Neurol 312:105–131

    Article  CAS  PubMed  Google Scholar 

  • Iacopucci AP, Mello RO, Barbosa-Silva R, Melo-Thomas L (2012) L-NOARG-induced catalepsy can be influenced by glutamatergic neurotransmission mediated by NMDA receptors in the inferior colliculus. Behav Brain Res 234(2):149–154. doi:10.1016/j.bbr.2012.06.022

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Bishop DC, Oliver DL (2009) Two classes of GABAergic neurons in the inferior colliculus. J Neurosci 29(44):13860–13869. doi:10.1523/JNEUROSCI.3454-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito T, Bishop DC, Oliver DL (2016) Functional organization of the local circuit in the inferior colliculus. Anat Sci Int 91(1):22–34

    Article  Google Scholar 

  • Joshi JC, Ray A, Gulati K (2015) Effects of morphine on stress induced anxiety in rats: role of nitric oxide and Hsp70. Physiol Behav 139:393–396

    Article  CAS  PubMed  Google Scholar 

  • Jung J, Na C, Huh Y (2012) Alterations in nitric oxide synthase in the aged CNS. Oxid Med Cell Longev 2012:718976. doi:10.1155/2012/718976 (Epub 2012)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kemp JM, Powell TPS (1971) The structure of the caudate nucleus of the cat. Light and electron micros-copy. Phil Trans Roy Soc Lond Ser B 262:383–401

    Article  CAS  Google Scholar 

  • Kruse M, Novarro D, Desjardins P, Butterworth RF (2004) Increased brain endothelial nitric oxide synthase expression in thiamine deficiency: relationship to selective vulnerability. Neurochem Int 45:49–56

    Article  CAS  PubMed  Google Scholar 

  • Kulesza RJ, Viñuela A, Saldaña E, Berrebi AS (2002) Unbiased stereological estimates of neuron number in subcortical auditory nuclei of the rat. Hear Res 168(1–2):12–24

    Article  PubMed  Google Scholar 

  • Landzhov B, Dzhambazova E (2012) Alteration in nitric oxide activity in the ventrolateral periaqueductal gray after immobilization stress in rats. Acta Morphol Anthropol 19:127–130

    Google Scholar 

  • Landzhov B, Bocheva A, Dzambazova E (2011a) Expression of nitric oxide in neurons of rat’s caudate putamen caused by d-kyotorphin. A histochemical study. Collect Czech Chem C Symp Ser 13:77–79

    CAS  Google Scholar 

  • Landzhov B, Dzambazova E, Bocheva (2011b) A effect of Tyr-Arg on NADPH-d-reactivity neurons in rat’s striatum. Collect Czech Chem C Symp Ser 13:31–33

    CAS  Google Scholar 

  • Lim HH, Anderson DJ (2006) Auditory cortical responses to electrical stimulation of inferior colliculus: implications for an auditory midbrain implant. J Neurophysiol 97:1413–1427

    Article  PubMed  Google Scholar 

  • Loftus WC, Malmierca MS, Bishop DC, Oliver DL (2008) The cytoarchitecture of the inferior colliculus revisited: a common organization of the lateral cortex in rat and cat. Neuroscience 154:196–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lysakowski A, Singer M (2000) Nitric oxide synthase localized in a subpopulation of vestibular efferents with NADPH diaphorase histochemistry and nitric oxide synthase immunohistochemistry. J Comp Neurol 427(4):508–521

    Article  CAS  PubMed  Google Scholar 

  • Malmierca MS, Rees A, Le Beau FE, Bjaalie JG (1995) Laminar organization of frequency-defined local axons within and between the inferior colliculi of the guinea pig. J Comp Neurol 357:124–144

    Article  CAS  PubMed  Google Scholar 

  • Malmierca MS, Cristaudo S, Perez-Gonzalez D, Covey E (2009) Stimulus-specific adaptation in the inferior colliculus of the anesthetized rat. J Neurosci 29:5483–5493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malmierca MS, Blackstad TW, Osen KK (2011) Computer-assisted 3-D reconstructions of Golgi-impregnated neurons in the cortical regions of the inferior colliculus of rat. Hear Res 274:13–26

    Article  PubMed  Google Scholar 

  • Martinelli G, Fridrich V, Holstein G (2002) l-citrulline immunostaining identifies nitric oxide production sites within neurons. Neuroscience 114:111–122. doi:10.1016/S0306-4522(02)00238-5

    Article  CAS  PubMed  Google Scholar 

  • Meininger V, Pol D, Derer P (1986) The inferior colliculus of the mouse. A Nissl and Golgi study. Neuroscience 17(4):1159–1179

    Article  CAS  PubMed  Google Scholar 

  • Mizukawa K (1990) Reduced nicotinamide adenine dinucleotide phosphate-diaphorase histochemistry: light and electron microscopic investigations. Meth Neurosci 3:457–472

    Article  Google Scholar 

  • Mizukawa K, Vincent ST, McGeer PL, McGeer EG (1989) Distribution of reduced-nicotinamide-adenine-dinucleotide-phosphate diaphorase-positive cells and fibres in the cat central nervous system. J Comp Neurol 279:281–311

    Article  CAS  PubMed  Google Scholar 

  • Moore DR (1988) Auditory brainstem of the ferret: sources of projections to the inferior colliculus. J Comp Neurol 269(3):342–354

    Article  CAS  PubMed  Google Scholar 

  • Moore DR, Kotak VC, Sanes DH (1998) Commissural and lemniscal synaptic input to the gerbil inferior colliculus. J Neurophysiol 80:2229–2236

    CAS  PubMed  Google Scholar 

  • Morawski M, Bruckner G, Jager C, Seeger G, Kunzle H, Arendt T (2010) Aggrecan-based extracellular matrix shows unique cortical features and conserved subcortical principles of mammalian brain organization in the Madagascan lesser hedgehog tenrec (Echinops telfairi Martin, 1838). Neuroscience 165(3):831–849. doi:10.1016/j.neuroscience.2009.08.018

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Lopez B, Estrada C, Escuero M (1998) Mechanisms of action and targets of nitric oxide in the oculomotor system. J Neurosci 18:10672–10679

    CAS  PubMed  Google Scholar 

  • Morest DK, Oliver DL (1984) The neuronal architecture of the inferior colliculus in the cat: defining the functional ana-tomy of the auditory midbrain. J Comp Neurol 222:209–236

    Article  CAS  PubMed  Google Scholar 

  • Moriizumi T, Hattori T (1991) Pallidotectal projection to the inferior colliculus of the rat. Exp Brain Res 87:223–226

    Article  CAS  PubMed  Google Scholar 

  • Moriizumi T, Leduc-Cross B, Wu JY, Hattori T (1992) Separate neuronal populations of the rat substantia nigra pars lateralis with distinct projection sites and transmitter phenotypes. Neuroscience 46(3):711–720

    Article  CAS  PubMed  Google Scholar 

  • Nakamoto KT, Mellott JG, Killius J, Storey-Workley ME, Sowick CS, Schofield BR (2013) Analysis of excitatory synapses in the guinea pig inferior colliculus: a study using electron microscopy and GABA immunocytochemistry. Neuroscience 237:170–183. doi:10.1016/j.neuroscience.2013.01.061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nwabueze-Ogbo FC, Popelar J, Syka J (2002) Changes in the acoustically evoked activity in the inferior colliculus of the rat after functional ablation of the auditory cortex. Physiol Res 51:S95–S104

    PubMed  Google Scholar 

  • Ohm TG, Braak H (1989) Auditory brainstem nuclei in Alzheimer’s disease. Neurosci Lett 96:60–63

    Article  CAS  PubMed  Google Scholar 

  • Olazabal UE, Moore JK (1989) Nigrotectal projection to the inferior colliculus: horseradish peroxidase transport and tyrosine hydroxylase immunohistochemical studies in rats, cats, and bats. J Comp Neurol 282:98–118

    Article  CAS  PubMed  Google Scholar 

  • Oliver DL (1987) Projections to the inferior colliculus from the anteroventral cochlear nucleus in the cat: possible substrates for binaural interaction. J Comp Neurol 264(1):24–46

    Article  CAS  PubMed  Google Scholar 

  • Oliver DL, Morest DK (1984) The central nucleus of the inferior colliculus in the cat. J Comp Neurol 222:237–264

    Article  CAS  PubMed  Google Scholar 

  • Oliver DL, Winer JA, Beckius GE, Saint Marie RL (1994) Morphology of GABAergic neurons in the inferior colliculus of the cat. J Comp Neurol 340(1):27-42

    Article  CAS  PubMed  Google Scholar 

  • Ouda L, Syka J (2012) Immunocytochemical profiles of inferior colliculus neurons in the rat and their changes with aging. Front Neural Circuits 6:68. doi:10.3389/fncir.2012.00068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paloff AM, Hinova-Palova D (1998) Topographical distribution of NADPH-diaphorase-positive neurons in the cat’s inferior colliculus. J Brain Res 39:231–243

    CAS  Google Scholar 

  • Paloff AM, Usunoff KG (1992) Projections to the inferior colliculus from the dorsal column nuclei. An experimental electron microscopic study in the cat. J Hirnforsch 33:597–610

    CAS  PubMed  Google Scholar 

  • Paloff AM, Usunoff KG, Hinova-Palova DV (1992) Ultrastructure of golgi-impregnated and gold-toned neurons in the central nucleus of the inferior colliculus in the cat. J Hirnforsch 33:361–407

    CAS  PubMed  Google Scholar 

  • Paloff AM, Christova T, Hinova-Palova DV, Ovtscharoff W (1994) Topographical distribution of NOS. Investigation with NADPH-diaphorase reaction in the cat’s brain. National Conference of Anatomy. Histology and Embryology, Stara Zagora (Bulgaria), Abstracts

  • Papantchev V, Paloff A, Christova T, Hinova-Palova D, Ovtscharoff W (2005) Light microscopical study of nitric oxide synthase I-positive neurons, including fibres in the vestibular nuclear complex of the cat. Acta Histochem 107(2):113–120

    Article  CAS  PubMed  Google Scholar 

  • Papantchev V, Paloff A, Hinova-Palova D, Hristov S, Todorova D, Ovtscharoff W (2006) Neuronal nitric oxide synthase immunopositive neurons in cat vestibular complex: a light and electron microscopic study. J Mol Histol 37(8–9):343–352

    Article  CAS  PubMed  Google Scholar 

  • Pasik P, Pasik T, Di Figlia M (1976) Quantitative aspects of neuronal organization in the neostriatum of the Macaque Monkey. In: Yahr MD (ed) Basal Ganglia. Raven press, New York, pp 57–89

    Google Scholar 

  • Perez-Gonzalez D, Malmierca MS, Covey E (2005) Novelty detector neurons in the mammalian auditory midbrain. Eur J Neurosci 22:2879–2885

    Article  PubMed  Google Scholar 

  • Prast H, Philippu A (2001) Nitric oxide as modulator of neuronal function. Prog Neurobiol 64(1):51–68

    Article  CAS  PubMed  Google Scholar 

  • Ramon y Cajal S (1891) Sur la structure de l’ecorce cerebrale de quelques mamiferes. La Cellule 7:125–176

    Google Scholar 

  • Ramon y Cajal S (1911) Histologie du Systeme Nerveux de l’Homme et des vertebres, vol 2. Maloine, Paris

    Google Scholar 

  • RoBards MJ (1979) Somatic neurons in the brainstem and neocortex projecting to the external nucleus of the inferior colliculus: an anatomical study in the opossum. J Comp Neurol 184(3):547–565

    Article  CAS  PubMed  Google Scholar 

  • Rodrigo J, Springall DR, Utenthal O, Bentura ML, Abadia-Molina F, Riveros-Moreno V, Martinez-Murillo R, Polak JM, Moncada S (1994) Localization of nitric oxide synthase in the adult rat brain. Philos Trans R Soc London B 345:175–221

    Article  CAS  Google Scholar 

  • Sala C, Segal M (2014) Dendritic spines: the locus of structural and functional plasticity. Physiol Rev 94(1):141–188

    Article  CAS  PubMed  Google Scholar 

  • Saldana E, Merchan MA (1992) Intrinsic and commissural connections of the rat inferior colliculus. J Comp Neurol 319:417–437

    Article  CAS  PubMed  Google Scholar 

  • Saldana E, Feliciano M, Mugnaini E (1996) Distribution of descending projections from primary auditory neocortex to inferior colliculus mimics the topography of intracollicular projections. J Comp Neurol 371:15–40

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Zuriaga D, Martн-Gutiйrrez N, De La Cruz MA, Peris-Sanchis MR (2007) Age-related changes of NADPH-diaphorase-positive neurons in the rat inferior colliculus and auditory cortex. Microsc Res Tech 70:1051–1059. doi:10.1002/jemt.20512

    Article  CAS  PubMed  Google Scholar 

  • Saxon DW, Beitz AJ (2000) Neuropeptides associated with the vestibular nuclei. In: Beitz AJ and Anderson JH (eds) Neurichemistry of the Vestibular System, Boca Raton, FL:CRC Press, 183–196

  • Schuller G, Covey E, Casseday JH (1991) Auditory pontine grey: connections and response properties in the horseshoe bat. Europ J Neurosci 3:648–662

    Article  Google Scholar 

  • Sharma V, Nag TC, Wadhwa S, Roy TS (2009) Stereological investigation and expression of calcium-binding proteins in developing human inferior colliculus. J Chem Neuroanat 37(2):78–86

    Article  CAS  PubMed  Google Scholar 

  • Shneiderman A, Henkel CK (1987) Banding of lateral superior olivary nucleus afferents in the inferior colliculus: a possible substrate for sensory integration. J Comp Neurol 266(4):519–534

    Article  CAS  PubMed  Google Scholar 

  • Shneiderman A, Oliver DL, Henkel CK (1988) Connections of the dorsal nucleus of the lateral lemniscus: an inhibitory parallel pathway in the ascending auditory system? J Comp Neurol 276(2):188–208

    Article  CAS  PubMed  Google Scholar 

  • Sinha UK, Hollen KM, Rodriguez R, Miller CA (1993) Auditory system degeneration in Alzheimer’s disease. Neurology 43(4):779–785

    Article  CAS  PubMed  Google Scholar 

  • Smith PH (1992) Anatomy and physiology of multipolar cells in the rat inferior collicular cortex using the in vitro brain slice technique. J Neurosci 12:3700–3715

    CAS  PubMed  Google Scholar 

  • Suga N, Ma XF (2003) Multiparametric corticofugal modulation and plasticity in the auditory system. Nat Rev Neurosci 4:783–794

    Article  CAS  PubMed  Google Scholar 

  • Suga N, Gao EQ, Zhang YF, Ma XF, Olsen JF (2000) The corticofugal system for hearing: recent progress. Proc Natl Acad Sci USA 97:11807–11814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka K, Otani K, Tokunaga A, Sugita S (1985) The organization of neurons in the nucleus of the lateral lemniscus projecting to the superior and inferior colliculi in the rat. Brain Res 341(2):252–260

    Article  CAS  PubMed  Google Scholar 

  • Thomas E, Pears AGE (1961) The line localization of dehydrogenases in the nervous system. Histochemie 2:266–282

    Article  CAS  PubMed  Google Scholar 

  • Thomas E, Pearse AGE (1964) The solitary active cells: histochemical demonstration of damage-resistant nerve cells with a TPN-diaphorase reaction. Acta Neuropathol (Berl) 3:238–249

    Article  CAS  Google Scholar 

  • Vincent SR, Kimura H (1992) Histochemical mapping of nitric oxide synthase in the rat brain. Neuroscience 46:755–784

    Article  CAS  PubMed  Google Scholar 

  • Vitale C, Marcelli V, Allocca R, Santangelo G, Riccardi P, Erro R, Amboni M, Pellecchia MT, Cozzolino A, Longo K, Picillo M, Moccia M, Agosti V, Sorrentino G, Cavaliere M, Marciano E, Barone P (2012) Hearing impairment in Parkinson’s disease: expanding the nonmotor phenotype. Mov Disord 27(12):1530–1535. doi:10.1002/mds.25149

    Article  PubMed  Google Scholar 

  • Wenstrup JJ, Larue DT, Winer JA (1994) Projections of physiologically defined subdi-visions of the inferior colliculus in the mustached bat: targets in the medial geniculated body and extrathalamic nuclei. J Comp Neurol 346:207–236

    Article  CAS  PubMed  Google Scholar 

  • Whitley JM, Henkel CK (1984) Topographical organization of the inferior collicular projection and other connections of the ventral nucleus of the lateral lemniscus in the cat. J Comp Neurol 229(2):257–270

    Article  CAS  PubMed  Google Scholar 

  • Willard FH, Martin GF (1983) The auditory brainstem nuclei and some of their projections to the inferior colliculus in the North American opossum. Neuroscience 10:1203–1232

    Article  CAS  PubMed  Google Scholar 

  • Winer JA (2005) Three systems of descending projections to the inferior colliculus. In: Winer JA, Schreiner CE (eds) The inferior colliculus. Springer, NewYork, pp 231–247

    Chapter  Google Scholar 

  • Winer JA, Larue DT, Diehl JJ, Hefti BJ (1998) Auditory cortical projections to the cat inferior colliculus. J Comp Neurol 400:147–174

    Article  CAS  PubMed  Google Scholar 

  • Wu MD, Kimura M, Hiromichi I, Helfert RH (2008) A classification of NOergic neurons in the inferior colliculus of rat according to co-existence with classical amino acid transmitters. Okajimas Folia Anat Jpn 85(1):17–27

    Article  CAS  PubMed  Google Scholar 

  • Yan J, Ehret G (2002) Corticofugal modulation of midbrain sound processing in the house mouse. Eur J Neurosci 16:119–128

    Article  PubMed  Google Scholar 

  • Zhang DX, Li L, Kelly JB, Wu SH (1998) GABAergic projections from the lateral lemniscus to the inferior colliculus of the rat. Hear Res 117:1–12

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Landzhov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hinova-Palova, D., Landzhov, B., Dzhambazova, E. et al. NADPH-diaphorase-positive neurons in the human inferior colliculus: morphology, distribution and clinical implications. Brain Struct Funct 222, 1829–1846 (2017). https://doi.org/10.1007/s00429-016-1310-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-016-1310-1

Keywords

Navigation