Skip to main content

Advertisement

Log in

Maternally involved galanin neurons in the preoptic area of the rat

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Recent selective stimulation and ablation of galanin neurons in the preoptic area of the hypothalamus established their critical role in control of maternal behaviors. Here, we identified a group of galanin neurons in the anterior commissural nucleus (ACN), and a distinct group in the medial preoptic area (MPA). Galanin neurons in ACN but not the MPA co-expressed oxytocin. We used immunodetection of phosphorylated STAT5 (pSTAT5), involved in prolactin receptor signal transduction, to evaluate the effects of suckling-induced prolactin release and found that 76 % of galanin cells in ACN, but only 12 % in MPA were prolactin responsive. Nerve terminals containing tuberoinfundibular peptide 39 (TIP39), a neuropeptide that mediates effects of suckling on maternal motivation, were abundant around galanin neurons in both preoptic regions. In the ACN and MPA, 89 and 82 % of galanin neurons received close somatic appositions, with an average of 2.9 and 2.6 per cell, respectively. We observed perisomatic innervation of galanin neurons using correlated light and electron microscopy. The connection was excitatory based on the glutamate content of TIP39 terminals demonstrated by post-embedding immunogold electron microscopy. Injection of the anterograde tracer biotinylated dextran amine into the TIP39-expressing posterior intralaminar complex of the thalamus (PIL) demonstrated that preoptic TIP39 fibers originate in the PIL, which is activated by suckling. Thus, galanin neurons in the preoptic area of mother rats are innervated by an excitatory neuronal pathway that conveys suckling-related information. In turn, they can be topographically and neurochemically divided into two distinct cell groups, of which only one is affected by prolactin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bergersen LH, Morland C, Ormel L, Rinholm JE, Larsson M, Wold JF, Roe AT, Stranna A, Santello M, Bouvier D, Ottersen OP, Volterra A, Gundersen V (2012) Immunogold detection of l-glutamate and d-serine in small synaptic-like microvesicles in adult hippocampal astrocytes. Cereb Cortex 22:1690–1697

    Article  CAS  PubMed  Google Scholar 

  • Berryman MA, Rodewald RD (1990) An enhanced method for post-embedding immunocytochemical staining which preserves cell membranes. J Histochem Cytochem 38:159–170

    Article  CAS  PubMed  Google Scholar 

  • Bloch GJ, Butler PC, Kohlert JG (1996) Galanin microinjected into the medial preoptic nucleus facilitates female- and male-typical sexual behaviors in the female rat. Physiol Behav 59:1147–1154

    Article  CAS  PubMed  Google Scholar 

  • Bloch GJ, Butler PC, Eckersell CB, Mills RH (1998) Gonadal steroid-dependent GAL-IR cells within the medial preoptic nucleus (MPN) and the stimulatory effects of GAL within the MPN on sexual behaviors. Ann N Y Acad Sci 863:188–205

    Article  CAS  PubMed  Google Scholar 

  • Bosch OJ, Neumann ID (2012) Both oxytocin and vasopressin are mediators of maternal care and aggression in rodents: from central release to sites of action. Horm Behav 61:293–303

    Article  CAS  PubMed  Google Scholar 

  • Bramham CR, Torp R, Zhang N, Storm-Mathisen J, Ottersen OP (1990) Distribution of glutamate-like immunoreactivity in excitatory hippocampal pathways: a semiquantitative electron microscopic study in rats. Neuroscience 39:405–417

    Article  CAS  PubMed  Google Scholar 

  • Bridges RS (2015) Neuroendocrine regulation of maternal behavior. Front Neuroendocrinol 36:178–196

    Article  CAS  PubMed  Google Scholar 

  • Bridges RS, Numan M, Ronsheim PM, Mann PE, Lupini CE (1990) Central prolactin infusions stimulate maternal behavior in steroid-treated, nulliparous female rats. Proc Natl Acad Sci USA 87:8003–8007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Briski KP, Brandt JA (2000) Oxytocin and vasopressin neurones in principal and accessory hypothalamic magnocellular structures express Fos-immunoreactivity in response to acute glucose deprivation. J Neuroendocrinol 12:409–414

    Article  CAS  PubMed  Google Scholar 

  • Broman J, Hassel B, Rinvik E, Ottersen OP (2000) Biochemistry and anatomy of transmitter glutamate. Handb Chem Neuroanat 18:1–44

    Article  CAS  Google Scholar 

  • Brooks PJ, Lund PK, Stumpf WE, Pedersen CA (1990) Oxytocin messenger ribonucleic acid levels in the medial preoptic area are increased during lactation. J Neuroendocrinol 2:621–626

    Article  CAS  PubMed  Google Scholar 

  • Brown RS, Kokay IC, Herbison AE, Grattan DR (2010) Distribution of prolactin-responsive neurons in the mouse forebrain. J Comp Neurol 518:92–102

    Article  CAS  PubMed  Google Scholar 

  • Brown RS, Herbison AE, Grattan DR (2011) Differential changes in responses of hypothalamic and brainstem neuronal populations to prolactin during lactation in the mouse. Biol Reprod 84:826–836

    Article  CAS  PubMed  Google Scholar 

  • Brunton PJ, Russell JA (2008) The expectant brain: adapting for motherhood. Nat Rev Neurosci 9:11–25

    Article  CAS  PubMed  Google Scholar 

  • Burbach JP, Voorhuis TA, van Tol HH, Ivell R (1987) In situ hybridization of oxytocin messenger RNA: macroscopic distribution and quantitation in rat hypothalamic cell groups. Biochem Biophys Res Commun 145:10–14

    Article  CAS  PubMed  Google Scholar 

  • Burbach JPH, Young LJ, Russell JA (2006) Oxytocin: synthesis, secretion, and reproductive functions. In: Neill JD (ed) Knobil and Neill’s physiology of reproduction. Academic Press, Oxford

    Google Scholar 

  • Caldwell JD, Jirikowski GF, Greer ER, Stumpf WE, Pedersen CA (1988) Ovarian steroids and sexual interaction alter oxytocinergic content and distribution in the basal forebrain. Brain Res 446:236–244

    Article  CAS  PubMed  Google Scholar 

  • Castel M, Morris JF (1988) The neurophysin-containing innervation of the forebrain of the mouse. Neuroscience 24:937–966

    Article  CAS  PubMed  Google Scholar 

  • Christiansen SH (2011) Regulation of the galanin system in the brainstem and hypothalamus by electroconvulsive stimulation in mice. Neuropeptides 45:337–341

    Article  CAS  PubMed  Google Scholar 

  • Ciosek J, Drobnik J (2013) Galanin modulates oxytocin release from rat hypothalamo-neurohypophysial explant in vitro—the role of acute or prolonged osmotic stimulus. Endokrynol Pol 64:139–148

    CAS  PubMed  Google Scholar 

  • Cservenak M, Bodnar I, Usdin TB, Palkovits M, Nagy GM, Dobolyi A (2010) Tuberoinfundibular peptide of 39 residues is activated during lactation and participates in the suckling-induced prolactin release in rat. Endocrinology 151:5830–5840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cservenak M, Szabo ER, Bodnar I, Leko A, Palkovits M, Nagy GM, Usdin TB, Dobolyi A (2013) Thalamic neuropeptide mediating the effects of nursing on lactation and maternal motivation. Psychoneuroendocrinology 38:3070–3084

    Article  CAS  PubMed  Google Scholar 

  • Decavel C, Van den Pol AN (1990) GABA: a dominant neurotransmitter in the hypothalamus. J Comp Neurol 302:1019–1037

    Article  CAS  PubMed  Google Scholar 

  • Decavel C, van den Pol AN (1992) Converging GABA- and glutamate-immunoreactive axons make synaptic contact with identified hypothalamic neurosecretory neurons. J Comp Neurol 316:104–116

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Cabiale Z, Flores-Burgess A, Parrado C, Narvaez M, Millon C, Puigcerver A, Covenas R, Fuxe K, Narvaez JA (2014) Galanin receptor/neuropeptide y receptor interactions in the central nervous system. Curr Protein Pept Sci 15:666–672

    Article  CAS  PubMed  Google Scholar 

  • Didier A, Carleton A, Bjaalie JG, Vincent JD, Ottersen OP, Storm-Mathisen J, Lledo PM (2001) A dendrodendritic reciprocal synapse provides a recurrent excitatory connection in the olfactory bulb. Proc Natl Acad Sci USA 98:6441–6446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobolyi A (2011) Novel potential regulators of maternal adaptations during lactation: tuberoinfundibular peptide 39 and amylin. J Neuroendocrinol 23:1002–1008

    Article  CAS  PubMed  Google Scholar 

  • Dobolyi A, Ueda H, Uchida H, Palkovits M, Usdin TB (2002) Anatomical and physiological evidence for involvement of tuberoinfundibular peptide of 39 residues in nociception. Proc Natl Acad Sci USA 99:1651–1656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobolyi A, Palkovits M, Usdin TB (2003) Expression and distribution of tuberoinfundibular peptide of 39 residues in the rat central nervous system. J Comp Neurol 455:547–566

    Article  CAS  PubMed  Google Scholar 

  • Dobolyi A, Irwin S, Wang J, Usdin TB (2006a) The distribution and neurochemistry of the parathyroid hormone 2 receptor in the rat hypothalamus. Neurochem Res 31:227–236

    Article  CAS  PubMed  Google Scholar 

  • Dobolyi A, Wang J, Irwin S, Usdin TB (2006b) Postnatal development and gender-dependent expression of TIP39 in the rat brain. J Comp Neurol 498:375–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobolyi A, Palkovits M, Usdin TB (2010) The TIP39-PTH2 receptor system: unique peptidergic cell groups in the brainstem and their interactions with central regulatory mechanisms. Prog Neurobiol 90:29–59

    Article  CAS  PubMed  Google Scholar 

  • Dobolyi A, Grattan DR, Stolzenberg DS (2014) Preoptic inputs and mechanisms that regulate maternal responsiveness. J Neuroendocrinol 26:627–640

    Article  CAS  PubMed  Google Scholar 

  • Dulac C, O’Connell LA, Wu Z (2014) Neural control of maternal and paternal behaviors. Science 345:765–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Emam Dief A, Caldwell JD, Jirikowski GF (2013) Colocalization of p450 aromatase and oxytocin immunostaining in the rat hypothalamus. Horm Metab Res 45:273–276

    CAS  PubMed  Google Scholar 

  • Eriksson M, Ceccatelli S, Uvnas-Moberg K, Iadarola M, Hokfelt T (1996) Expression of Fos-related antigens, oxytocin, dynorphin and galanin in the paraventricular and supraoptic nuclei of lactating rats. Neuroendocrinology 63:356–367

    Article  CAS  PubMed  Google Scholar 

  • Fleming AS, Walsh C (1994) Neuropsychology of maternal behavior in the rat: c-fos expression during mother-litter interactions. Psychoneuroendocrinology 19:429–443

    Article  CAS  PubMed  Google Scholar 

  • Freeman ME, Kanyicska B, Lerant A, Nagy G (2000) Prolactin: structure, function, and regulation of secretion. Physiol Rev 80:1523–1631

    CAS  PubMed  Google Scholar 

  • Garcia-Falgueras A, Ligtenberg L, Kruijver FP, Swaab DF (2011) Galanin neurons in the intermediate nucleus (InM) of the human hypothalamus in relation to sex, age, and gender identity. J Comp Neurol 519:3061–3084

    Article  CAS  PubMed  Google Scholar 

  • Gavrilov YV, Ellison BA, Yamamoto M, Reddy H, Haybaeck J, Mignot E, Baumann CR, Scammell TE, Valko PO (2016) Disrupted sleep in narcolepsy: exploring the integrity of galanin neurons in the ventrolateral preoptic Area. Sleep 39:1059–1062

    Article  PubMed  PubMed Central  Google Scholar 

  • Grattan DR, Kokay IC (2008) Prolactin: a pleiotropic neuroendocrine hormone. J Neuroendocrinol 20:752–763

    Article  CAS  PubMed  Google Scholar 

  • Greer ER, Caldwell JD, Johnson MF, Prange AJ Jr, Pedersen CA (1986) Variations in concentration of oxytocin and vasopressin in the paraventricular nucleus of the hypothalamus during the estrous cycle in rats. Life Sci 38:2311–2318

    Article  CAS  PubMed  Google Scholar 

  • Hammouche SB, Bennis M (2013) Galanin immunoreactivity in the brain of the desert lizard Uromastyx acanthinura during activity season. Folia Histochem Cytobiol 51:45–54

    Article  CAS  PubMed  Google Scholar 

  • Hokfelt T, Broberger C, Diez M, Xu ZQ, Shi T, Kopp J, Zhang X, Holmberg K, Landry M, Koistinaho J (1999) Galanin and NPY, two peptides with multiple putative roles in the nervous system. Horm Metab Res 31:330–334

    Article  CAS  PubMed  Google Scholar 

  • Hou-Yu A, Lamme AT, Zimmerman EA, Silverman AJ (1986) Comparative distribution of vasopressin and oxytocin neurons in the rat brain using a double-label procedure. Neuroendocrinology 44:235–246

    Article  CAS  PubMed  Google Scholar 

  • Insel TR, Harbaugh CR (1989) Lesions of the hypothalamic paraventricular nucleus disrupt the initiation of maternal behavior. Physiol Behav 45:1033–1041

    Article  CAS  PubMed  Google Scholar 

  • Jakobowitz DM, Skofitsch G (1991) Localization of galanin cell bodies in the brain by immunohistochemistry and in situ hybridization histochemistry. In: Hökfelt T, Bartfai T, Jacobowitz DM, Ottoson D (eds) Galanin: a new multifunctional peptide in the neuro-endocrine system. Macmillan Press, London, pp 69–92

    Chapter  Google Scholar 

  • Jenstad M, Quazi AZ, Zilberter M et al (2009) System A transporter SAT2 mediates replenishment of dendritic glutamate pools controlling retrograde signaling by glutamate. Cereb Cortex 19:1092–1106

    Article  PubMed  Google Scholar 

  • Knobloch HS, Grinevich V (2014) Evolution of oxytocin pathways in the brain of vertebrates. Front Behav Neurosci 8:31

    Article  PubMed  PubMed Central  Google Scholar 

  • Laflamme N, Nappi RE, Drolet G, Labrie C, Rivest S (1998) Expression and neuropeptidergic characterization of estrogen receptors (ERalpha and ERbeta) throughout the rat brain: anatomical evidence of distinct roles of each subtype. J Neurobiol 36:357–378

    Article  CAS  PubMed  Google Scholar 

  • Landry M, Roche D, Angelova E, Calas A (1997) Expression of galanin in hypothalamic magnocellular neurones of lactating rats: co-existence with vasopressin and oxytocin. J Endocrinol 155:467–481

    Article  CAS  PubMed  Google Scholar 

  • Lang R, Gundlach AL, Kofler B (2007) The galanin peptide family: receptor pharmacology, pleiotropic biological actions, and implications in health and disease. Pharmacol Ther 115:177–207

    Article  CAS  PubMed  Google Scholar 

  • Larsen CM, Grattan DR (2012) Prolactin, neurogenesis, and maternal behaviors. Brain Behav Immun 26:201–209

    Article  CAS  PubMed  Google Scholar 

  • Laurent FM, Hindelang C, Klein MJ, Stoeckel ME, Felix JM (1989) Expression of the oxytocin and vasopressin genes in the rat hypothalamus during development: an in situ hybridization study. Brain Res Dev Brain Res 46:145–154

    Article  CAS  PubMed  Google Scholar 

  • Li C, Chen P, Smith MS (1999) Neural populations in the rat forebrain and brainstem activated by the suckling stimulus as demonstrated by cFos expression. Neuroscience 94:117–129

    Article  CAS  PubMed  Google Scholar 

  • Mann PE, Bridges RS (2002) Prolactin receptor gene expression in the forebrain of pregnant and lactating rats. Brain Res Mol Brain Res 105:136–145

    Article  CAS  PubMed  Google Scholar 

  • Martin-Perez J, Garcia-Martinez JM, Sanchez-Bailon MP, Mayoral-Varo V, Calcabrini A (2015) Role of SRC family kinases in prolactin signaling. Adv Exp Med Biol 846:163–188

    Article  PubMed  Google Scholar 

  • Mathieson WB, Taylor SW, Marshall M, Neumann PE (2000) Strain and sex differences in the morphology of the medial preoptic nucleus of mice. J Comp Neurol 428:254–265

    Article  CAS  PubMed  Google Scholar 

  • Matsubara A, Laake JH, Davanger S, Usami S, Ottersen OP (1996) Organization of AMPA receptor subunits at a glutamate synapse: a quantitative immunogold analysis of hair cell synapses in the rat organ of Corti. J Neurosci 16:4457–4467

    CAS  PubMed  Google Scholar 

  • Meeker RB, Swanson DJ, Greenwood RS, Hayward JN (1993) Quantitative mapping of glutamate presynaptic terminals in the supraoptic nucleus and surrounding hypothalamus. Brain Res 600:112–122

    Article  CAS  PubMed  Google Scholar 

  • Meister B, Villar MJ, Ceccatelli S, Hokfelt T (1990) Localization of chemical messengers in magnocellular neurons of the hypothalamic supraoptic and paraventricular nuclei: an immunohistochemical study using experimental manipulations. Neuroscience 37:603–633

    Article  CAS  PubMed  Google Scholar 

  • Neville MC (2006) Lactation and Its Hormonal Control. In: Neill JD (ed) Physiology of reproduction. Academic Press, Amsterdam, pp 2993–3054

    Google Scholar 

  • Nomura M, Tsutsui M, Shimokawa H, Fujimoto N, Ueta Y, Morishita T, Yanagihara N, Matsumoto T (2005) Effects of nitric oxide synthase isoform deletion on oxytocin and vasopressin messenger RNA in mouse hypothalamus. NeuroReport 16:413–417

    Article  CAS  PubMed  Google Scholar 

  • Numan M, Insel TR (2003) The neurobiology of parental behavior. Springer, New York

    Google Scholar 

  • Numan M, Rosenblatt JS, Komisaruk BR (1977) Medial preoptic area and onset of maternal behavior in the rat. J Comp Physiol Psychol 91:146–164

    Article  CAS  PubMed  Google Scholar 

  • Nylen A, Skagerberg G, Alm P, Larsson B, Holmqvist B, Andersson KE (2001) Nitric oxide synthase in the hypothalamic paraventricular nucleus of the female rat; organization of spinal projections and coexistence with oxytocin or vasopressin. Brain Res 908:10–24

    Article  CAS  PubMed  Google Scholar 

  • Olazabal DE, Kalinichev M, Morrell JI, Rosenblatt JS (2002) MPOA cytotoxic lesions and maternal behavior in the rat: effects of midpubertal lesions on maternal behavior and the role of ovarian hormones in maturation of MPOA control of maternal behavior. Horm Behav 41:126–138

    Article  CAS  PubMed  Google Scholar 

  • Ottersen OP (1989) Postembedding immunogold labelling of fixed glutamate: an electron microscopic analysis of the relationship between gold particle density and antigen concentration. J Chem Neuroanat 2:57–66

    CAS  PubMed  Google Scholar 

  • Ottersen OP, Storm-Mathisen J, Bramham C, Torp R, Laake J, Gundersen V (1990) A quantitative electron microscopic immunocytochemical study of the distribution and synaptic handling of glutamate in rat hippocampus. Prog Brain Res 83:99–114

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (1997) The rat brain in stereotaxic coordinates. Academic Press, Sidney

    Google Scholar 

  • Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates. Academic Press, San Diego

    Google Scholar 

  • Pedersen CA, Caldwell JD, Walker C, Ayers G, Mason GA (1994) Oxytocin activates the postpartum onset of rat maternal behavior in the ventral tegmental and medial preoptic areas. Behav Neurosci 108:1163–1171

    Article  CAS  PubMed  Google Scholar 

  • Pedersen CA, Vadlamudi SV, Boccia ML, Amico JA (2006) Maternal behavior deficits in nulliparous oxytocin knockout mice. Genes Brain Behav 5:274–281

    Article  CAS  PubMed  Google Scholar 

  • Phend KD, Weinberg RJ, Rustioni A (1992) Techniques to optimize post-embedding single and double staining for amino acid neurotransmitters. J Histochem Cytochem 40:1011–1020

    Article  CAS  PubMed  Google Scholar 

  • Porteous R, Petersen SL, Yeo SH, Bhattarai JP, Ciofi P, de Tassigny XD, Colledge WH, Caraty A, Herbison AE (2011) Kisspeptin neurons co-express met-enkephalin and galanin in the rostral periventricular region of the female mouse hypothalamus. J Comp Neurol 519:3456–3469

    Article  CAS  PubMed  Google Scholar 

  • Powers-Martin K, Phillips JK, Biancardi VC, Stern JE (2008) Heterogeneous distribution of basal cyclic guanosine monophosphate within distinct neuronal populations in the hypothalamic paraventricular nucleus. Am J Physiol Regul Integr Comp Physiol 295:R1341–R1350

    Article  CAS  PubMed  Google Scholar 

  • Rhodes CH, Morrell JI, Pfaff DW (1981) Immunohistochemical analysis of magnocellular elements in rat hypothalamus: distribution and numbers of cells containing neurophysin, oxytocin, and vasopressin. J Comp Neurol 198:45–64

    Article  CAS  PubMed  Google Scholar 

  • Rossmanith WG, Clifton DK, Steiner RA (1996) Galanin gene expression in hypothalamic GnRH-containing neurons of the rat: a model for autocrine regulation. Horm Metab Res 28:257–266

    Article  CAS  PubMed  Google Scholar 

  • Sapsford TJ, Kokay IC, Ostberg L, Bridges RS, Grattan DR (2012) Differential sensitivity of specific neuronal populations of the rat hypothalamus to prolactin action. J Comp Neurol 520:1062–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simerly RB, Swanson LW (1986) The organization of neural inputs to the medial preoptic nucleus of the rat. J Comp Neurol 246:312–342

    Article  CAS  PubMed  Google Scholar 

  • Simerly RB, Swanson LW (1988) Projections of the medial preoptic nucleus: a Phaseolus vulgaris leucoagglutinin anterograde tract-tracing study in the rat. J Comp Neurol 270:209–242

    Article  CAS  PubMed  Google Scholar 

  • Simmons DM, Swanson LW (2008) High-resolution paraventricular nucleus serial section model constructed within a traditional rat brain atlas. Neurosci Lett 438:85–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sjoeholm A, Bridges RS, Grattan DR, Anderson GM (2011) Region-, neuron-, and signaling pathway-specific increases in prolactin responsiveness in reproductively experienced female rats. Endocrinology 152:1979–1988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Somogyi P, Halasy K, Somogyi J, Storm-Mathisen J, Ottersen OP (1986) Quantification of immunogold labelling reveals enrichment of glutamate in mossy and parallel fibre terminals in cat cerebellum. Neuroscience 19:1045–1050

    Article  CAS  PubMed  Google Scholar 

  • Stack EC, Numan M (2000) The temporal course of expression of c-Fos and Fos B within the medial preoptic area and other brain regions of postpartum female rats during prolonged mother–young interactions. Behav Neurosci 114:609–622

    Article  CAS  PubMed  Google Scholar 

  • Stern JM, Lonstein JS (2001) Neural mediation of nursing and related maternal behaviors. Prog Brain Res 133:263–278

    Article  CAS  PubMed  Google Scholar 

  • Storm-Mathisen J, Leknes AK, Bore AT, Vaaland JL, Edminson P, Haug FM, Ottersen OP (1983) First visualization of glutamate and GABA in neurones by immunocytochemistry. Nature 301:517–520

    Article  CAS  PubMed  Google Scholar 

  • Strathearn L, Fonagy P, Amico J, Montague PR (2009) Adult attachment predicts maternal brain and oxytocin response to infant cues. Neuropsychopharmacology 34:2655–2666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szabo FK, Snyder N, Usdin TB, Hoffman GE (2010) A direct neuronal connection between the subparafascicular and ventrolateral arcuate nuclei in non-lactating female rats. Could this pathway play a role in the suckling-induced prolactin release? Endocrine 37:62–70

    Article  CAS  PubMed  Google Scholar 

  • Tillet Y, Tourlet S, Picard S, Sizaret PY, Caraty A (2012) Morphofunctional interactions between galanin and GnRH-containing neurones in the diencephalon of the ewe. The effect of oestradiol. J Chem Neuroanat 43:14–19

    Article  CAS  PubMed  Google Scholar 

  • Torner L, Toschi N, Nava G, Clapp C, Neumann ID (2002) Increased hypothalamic expression of prolactin in lactation: involvement in behavioural and neuroendocrine stress responses. Eur J Neurosci 15:1381–1389

    Article  PubMed  Google Scholar 

  • Usdin TB, Hoare SR, Wang T, Mezey E, Kowalak JA (1999) TIP39: a new neuropeptide and PTH2-receptor agonist from hypothalamus. Nat Neurosci 2:941–943

    Article  CAS  PubMed  Google Scholar 

  • Wang BL, Larsson LI (1985) Simultaneous demonstration of multiple antigens by indirect immunofluorescence or immunogold staining. Novel light and electron microscopical double and triple staining method employing primary antibodies from the same species. Histochemistry 83:47–56

    Article  CAS  PubMed  Google Scholar 

  • Whitelaw CM, Robinson JE, Hastie PM, Padmanabhan V, Evans NP (2012) Effects of cycle stage on regionalised galanin, galanin receptors 1–3, GNRH and GNRH receptor mRNA expression in the ovine hypothalamus. J Endocrinol 212:353–361

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, Autry AE, Bergan JF, Watabe-Uchida M, Dulac CG (2014) Galanin neurons in the medial preoptic area govern parental behaviour. Nature 509:325–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Grant support was provided by HAS Postdoctoral Research Fellowship Program for MCs, OTKA K100319, OTKA K116538 and KTIA_NAP_B_13-2-2014-0004 Program for AD, and NIMH IRP for TBU. The technical assistance of Nikolett Hanák and Szilvia Deák is also acknowledged. The authors also thank Cintia K Finszter for technical contribution to pSTAT5 immunohistochemistry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arpád Dobolyi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

M. Cservenák and V. Kis contributed to the work equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

429_2016_1246_MOESM1_ESM.tif

Supplementary fig. 1. Oxytocin neurons in sagittal plane. A: Schematic drawing of the rat brain 0.4 mm lateral from the bregma (Paxinos and Watson 1997). The framed area corresponds to B. The positions of the anterior commissural nucleus (ACN) and the paraventricular nucleus (PVN) are shown. B: An oxytocin immunolabeled sagittal section demonstrated the presence of oxytocin-ir neurons in both the ACN and the PVN. The distance between the two nuclei can also be appreciated. Additional abbreviations: cc – corpus callosum, Cx – cerebral cortex, f – fornix, OB – olfactory bulb, och – optic chiasm, TH – thalamus. Scale bar = 500 μm (TIFF 6080 kb)

429_2016_1246_MOESM2_ESM.tif

Supplementary fig. 2. Glutamate and GABA immunoreactivities in boutons establishing symmetric and asymmetric synapses in the preoptic area. A: A representative electron micrograph of a section double labeled for GABA and glutamate with gold particles of 10 and 18 nm, respectively. The boutons establishing synapses on the same dendrite are marked by dashed lines. The bouton on the left (b1) establishes a symmetric synapse pointed to by an empty arrow and contains a very high density of 10 nm gold particles indicative of the presence of GABA. In contrast, the number of 18 nm gold particles is very low in this terminal. In turn, the terminal on the right (b2) establishes an asymmetric synapse on the dendrite and contains a high density of 18 nm gold particles indicative of the presence of glutamate, while the number of 10 nm gold particles is very low. B: The scatterplot shows the GABA gold particle density as a function of glutamate gold particle density in all the terminals examined. Symmetric (green) and asymmetric (orange) synapses form clearly separate clusters. C: The glutamate/GABA gold particle density ratio is shown in a box plot for terminals establishing asymmetric and symmetric synapses. To construct the box plot, the same data set was used as for the scatter plot diagram. The glutamate/GABA ratio is highly significantly different between the two groups of terminals (***: p < 0.001) (TIFF 8979 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cservenák, M., Kis, V., Keller, D. et al. Maternally involved galanin neurons in the preoptic area of the rat. Brain Struct Funct 222, 781–798 (2017). https://doi.org/10.1007/s00429-016-1246-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-016-1246-5

Keywords

Navigation