Skip to main content
Log in

Growth and refinement of excitatory synapses in the human auditory cortex

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

We had earlier demonstrated a neurofilament-rich plexus of axons in the presumptive human auditory cortex during fetal development which became adult-like during infancy. To elucidate the origin of these axons, we studied the expression of the vesicular glutamate transporters (VGLUT) 1 and 2 in the human auditory cortex at different stages of development. While VGLUT-1 expression predominates in intrinsic and cortico-cortical synapses, VGLUT-2 expression predominates in thalamocortical synapses. Levels of VGLUT-2 mRNA were higher in the auditory cortex before birth compared to postnatal development. In contrast, levels of VGLUT-1 mRNA were low before birth and increased during postnatal development to peak during childhood and then began to decrease in adolescence. Both VGLUT-1 and VGLUT-2 proteins were present in the human auditory cortex as early as 15GW. Further, immunohistochemistry revealed that the supra- and infragranular layers were more immunoreactive for VGLUT-1 compared to that in Layer IV at 34GW and this pattern was maintained until adulthood. As for VGLUT-1 mRNA, VGLUT-1 synapses increased in density between prenatal development and childhood in the human auditory cortex after which they appeared to undergo attrition or pruning. The adult pattern of VGLUT-2 immunoreactivity (a dense band of VGLUT-2-positive terminals in Layer IV) also began to appear in the presumptive Heschl’s gyrus at 34GW. The density of VGLUT-2-positive puncta in Layer IV increased between prenatal development and adolescence, followed by a decrease in adulthood, suggesting that thalamic axons which innervate the human auditory cortex undergo pruning comparatively late in development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Agmon A, Connors BW (1992) Correlation between intrinsic firing patterns and thalamocortical synaptic responses of neurons in mouse barrel cortex. J Neurosci 12(1):319–329

    CAS  PubMed  Google Scholar 

  • Amitai Y (2001) Thalamocortical synaptic connections: efficacy, modulation, inhibition and plasticity. Rev Neurosci 12:159–173

    Article  CAS  PubMed  Google Scholar 

  • Antonini A, Stryker MP (1993) Development of individual geniculocortical arbors in cat striate cortex and effects of binocular impulse blockade. J Neurosci 13:3549–3573

    CAS  PubMed  Google Scholar 

  • Balaram P, Takahata T, Kaas JH (2011) VGLUT2 mRNA and protein expression in the visual thalamus and midbrain of prosimian galagos (Otolemur garnetti). Eye Brain. 3:5–15

    Article  CAS  Google Scholar 

  • Barroso-Chinea P, Castle M, Aymerich MS, Pérez-Manso M, Erro E, Tuñon T, Lanciego JL (2007) Expression of the mRNAs encoding for the vesicular glutamate transporters 1 and 2 in the rat thalamus. J Comp Neurol 501(5):703–715

    Article  CAS  PubMed  Google Scholar 

  • Barroso-Chinea P, Castle M, Aymerich MS, Lanciego JL (2008) Expression of vesicular glutamate transporters 1 and 2 in the cells of origin of the rat thalamostriatal pathway. J Chem Neuroanat 35(1):101–107

    Article  CAS  PubMed  Google Scholar 

  • Bartzokis G, Beckson M, Lu PH, Nuechterlein KH, Edwards N, Mintz J (2001) Age-related changes in frontal and temporal lobe volumes in men: a magnetic resonance imaging study. Arch Gen Psychiatry 58:461–465

    Article  CAS  PubMed  Google Scholar 

  • Beierlein M, Connors BW (2002) Short-term dynamics of thalamocortical and intracortical synapses onto layer 6 neurons in neocortex. J Neurophysiol 88(4):1924–1932

    PubMed  Google Scholar 

  • Bellocchio EE, Reimer RJ, Fremeau RT, Edwards RH (2000) Uptake of glutamate intosynaptic vesicles by an inorganic phosphate transporter. Science 289:957–960

    Article  CAS  PubMed  Google Scholar 

  • Benes FM (1998) Brain development, VII. human brain growth spans decades. Am J Psychiatry 155:1489

    Article  CAS  PubMed  Google Scholar 

  • Benes FM, Turtle M, Khan Y, Farol P (1994) Myelination of a key relay zone in the hippocampal formation occurs in the human brain during childhood, adolescence, and adulthood. Arch Gen Psychiatry 51:477–484

    Article  CAS  PubMed  Google Scholar 

  • Blaesse P, Ehrhardt S, Friauf E, Nothwang HG (2005) Developmental pattern of three vesicular glutamate transporters in the rat superior olivary complex. Cell Tissue Res 320(1):33–50

    Article  CAS  PubMed  Google Scholar 

  • Bosnyak DJ, Eaton RA, Roberts LE (2004) Distributed auditory cortical representations are modified when non-musicians are trained at pitch discrimination with 40 Hz amplitude modulated tones. Cereb Cortex 14:1088–1099

    Article  PubMed  Google Scholar 

  • Boulland JL, Qureshi T, Seal RP, Rafiki A, Gundersen V, Bergersen LH, Fremeau RT Jr, Edwards RH, Storm-Mathisen J, Chaudhry FA (2004) Expression of the vesicular glutamate transporters during development indicates the widespread corelease of multiple neurotransmitters. J Comp Neurol 480(3):264–280

    Article  CAS  PubMed  Google Scholar 

  • Brose N, Petrenko AG, Südhof TC, Jahn R (1992) Synaptotagmin: a calcium sensor on the synaptic vesicle surface. Science 256(5059):1021–1025

    Article  CAS  PubMed  Google Scholar 

  • Bryant KL, Suwyn C, Reding KM, Smiley JF, Hackett TA, Preuss TM (2012) Evidence for ape and human specializations in geniculostriate projections from VGLUT2 immunohistochemistry. Brain Behav Evol 80(3):210–221

    Article  PubMed  PubMed Central  Google Scholar 

  • Burkhalter A, Bernardo KL, Charles V (1993) Development of local circuits in human visual cortex. J Neurosci 13:1916–1931

    CAS  PubMed  Google Scholar 

  • Casey BJ, Tottenham N, Liston C, Durston S (2005) Imaging the developing brain: what have we learned about cognitive development? Trends Cogn Sci. 9(3):104–110

    Article  CAS  PubMed  Google Scholar 

  • Cheour M, Alho K, Ceponiene R, Reinikainen K, Sainio K, Pohjavuori M, Aaltonen O, Na¨a¨ta¨nen R (1998) Maturation of the mismatch negativity in infants. Int J Psychophysiol 29:217–226

    Article  CAS  PubMed  Google Scholar 

  • Cheour-Luhtanen M, Alho K, Kujala T, Sainio K, Reinikainen K, Renlund M, Aaltonen O, Eerola O, Naatanen R (1995) Mismatch negativity indicates vowel discrimination in newborns. Hear Res 82:53–58

    Article  CAS  PubMed  Google Scholar 

  • Cheour-Luhtanen M, Alho K, Sainio K, Rinne T, Reinikainen K, Pohjavuori M, Renlund M, Aaltonen O, Eerola O, Na¨a¨ta¨nen R (1996) The ontogenetically earliest discriminative response of the human brain. Psychophysiology 33(4):478–481

    Article  CAS  PubMed  Google Scholar 

  • Cheour-Luhtanen M, Alho K, Sainio K, Reinikainen K, Renlund M, Aaltonen O, Eerola O, Na¨a¨ta¨nen R (1997) The mismatch negativity to speech sounds at the age of three months. Dev Neuropsychol 13:167–174

    Article  Google Scholar 

  • Chiry O, Tardif E, Magistretti PJ, Clarke S (2003) Patterns of calcium-binding proteins support parallel and hierarchical organization of human auditory areas. Eur J Neurosci 17:397–410

    Article  PubMed  Google Scholar 

  • Constantinople CM, Bruno RM (2013) Deep cortical layers are activated directly by thalamus. Science 340(6140):1591–1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cruikshank SJ, Rose HJ, Metherate R (2002) Auditory thalamocortical synaptic transmission in vitro. J Neurophysiol 87:361–384

    PubMed  Google Scholar 

  • Daniels RW, Collins CA, Gelfand MV, Dant J, Brooks ES, Krantz DE, Diantonio A (2004) Increased expression of the Drosophila vesicular glutamate transporter leads to excess glutamate release and a compensatory decrease in quantal content. J Neurosci 24:10466–10474

    Article  CAS  PubMed  Google Scholar 

  • Danik M, Cassoly E, Manseau F, Sotty F, Mouginot D, Williams S (2005) Frequent coexpression of the vesicular glutamate transporter 1 and 2 genes, as well as co-expression with genes for choline acetyltransferase or glutamic acid decarboxylase in neurons of rat brain. J Neurosci Res 81(4):506–521

    Article  CAS  PubMed  Google Scholar 

  • De Gois S, Schäfer MK, Defamie N, Chen C, Ricci A, Weihe E, Varoqui H, Erickson JD (2005) Homeostatic scaling of vesicular glutamate and GABA transporter expression in rat neocortical circuits. J Neurosci 25(31):7121–7133

    Article  PubMed  CAS  Google Scholar 

  • de la Mothe LA, Blumell S, Kajikawa Y, Hackett TA (2006) Cortical connections of the auditory cortex in marmoset monkeys: core and medial belt regions. J Comp Neurol. 496(1):27–71

    Article  PubMed  Google Scholar 

  • Dehaene-Lambertz G, Dehaene S, Hertz-Pannier L (2002) Functional neuroimaging of speech perception in infants. Science 298:201–205

    Article  CAS  Google Scholar 

  • Dougherty RP (2005) Extensions of DAMAS and benefits and limitations of deconvolution in beamforming. AIAA 2005-2961; 11th AIAA/CEAS Aeroacoustics Conference (26th AIAA Aeroacoustics Conference) 23–25 May 2005, Monterey, California. pp 1–13

  • Draganova R, Eswaran H, Murphy P, Huotilainen M, Lowery C, Preissl H (2005) Sound frequency change detection in fetuses and newborns, a magnetoencephalographic study. Neuroimage 28:354–361

    Article  PubMed  Google Scholar 

  • Draganova R, Eswaran H, Murphy P, Lowery C, Preissl H (2007) Serial magnetoencephalographic study of fetal and newborn auditory discriminative evoked responses. Early Hum Dev 83:199–207

    Article  PubMed  Google Scholar 

  • Dubois J, Hertz-Pannier L, Dehaene-Lambertz G, Cointepas Y, Le Bihan D (2006) Assessment of the early organization and maturation of infants’ cerebral white matter fiber bundles: a feasibility study using quantitative diffusion tensor imaging and tractography. NeuroImage 30:1121–1132

    Article  CAS  PubMed  Google Scholar 

  • Dumitriu D, Berger SI, Hamo C, Hara Y, Bailey M, Hamo A, Grossman YS, Janssen WG, Morrison JH (2012) Vamping: stereology-based automated quantification of fluorescent puncta size and density. J Neurosci Methods 209(1):97–105

    Article  PubMed  PubMed Central  Google Scholar 

  • Ebbesson SO (1980) The parcellation theory and its relation to interspecific variability in brain organization, evolutionary and ontogenetic development, and neuronal plasticity. Cell Tissue Res 213(2):179–212

    Article  CAS  PubMed  Google Scholar 

  • Eggermont JJ, Moore JK (2012) Morphological and functional development of the auditory nervous system’, Chapter 3; L.A. Werner et al. (eds.), Human Auditory Development, Springer Handbook of Auditory Research 42: pp 61–105

  • Erickson JD, De Gois S, Varoqui H, Schafer MK, Weihe E (2006) Activity dependent regulation of vesicular glutamate and GABA transporters: a means to scale quantal size. Neurochem Int 48:643–649

    Article  CAS  PubMed  Google Scholar 

  • Fair DA, Bathula D, Mills KL, Dias TG, Blythe MS, Zhang D, Snyder AZ, Raichle ME, Stevens AA, Nigg JT, Nagel BJ (2010) Maturing thalamocortical functional connectivity across development. Front Syst Neurosci 18:4–10. doi:10.3389/fnsys.2010.00010 (eCollection 2010)

    Google Scholar 

  • Fitzpatrick KA, Imig TJ (1978) Projections of auditory cortex upon the thalamus and midbrain in the owl monkey. J Comp Neurol. 177(4):573–574

    Article  CAS  PubMed  Google Scholar 

  • Fremeau RT, Troyer MD, Pahner I, Nygaard GO, Tran CH, Reimer RJ, Bellocchio EE, Fortin D, Storm-Mathisen J, Edwards RH (2001) The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron 31:247–260

    Article  CAS  PubMed  Google Scholar 

  • Fujiyama F, Kuramoto E, Okamoto K, Hioki H, Furuta T, Zhou L, Nomura S, Kaneko T (2004) Presynaptic localization of an AMPA-type glutamate receptor in corticostriatal and thalamostriatal axon terminals. Eur J Neuorsci 20:3322–3330

    Article  Google Scholar 

  • Fung SJ, Webster MJ, Weickert CS (2011) Expression of VGluT1 and VGAT mRNAs in human dorsolateral prefrontal cortex during development and in schizophrenia. Brain Res 1388:22–31

    Article  CAS  PubMed  Google Scholar 

  • Galuske RAW, Schlote W, Bratzke H, Singer W (2000) Interhemispheric asymmetries of the modular structure in human temporal cortex. Science 289:1946–1949

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Marin V, Ahmed TH, Afzal YC, Hawken MJ (2013) Distribution of vesicular glutamate transporter 2 (VGluT2) in the primary visual cortex of the macaque and human. J Comp Neurol. 521(1):130–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giedd JN, Blumenthal J, Jeffries NO, Castellanos FX, Liu H, Zijdenbos A, Paus T, Evans AC, Rapoport JL (1999) Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci 2(10):861–863

    Article  CAS  PubMed  Google Scholar 

  • Gilley PM, Sharma A, Dorman M, Martin K (2005) Developmental changes in refractoriness of the cortical auditory evoked potential. Clin Neurophysiol 116:648–657

    Article  PubMed  Google Scholar 

  • Gleason KK, Dondeti VR, Hsia HL, Cochran ER, Gumulak-Smith J, Saha MS (2003) The vesicular glutamate transporter 1 (xVGlut1) is expressed in discrete regions of the developing Xenopus laevis nervous system. Gene Expr Patterns 3:503–507

    Article  CAS  PubMed  Google Scholar 

  • Gogtay N, Giedd JN, Lusk L, Hayashi KM, Greenstein D, Vaituzis AC, Nugent TF 3rd, Herman DH, Clasen LS, Toga AW, Rapoport JL, Thompson PM (2004) Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci U S A 101(21):8174–8179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS (2001) A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 14:21–36

    Article  CAS  PubMed  Google Scholar 

  • Gras C, Herzog E, Bellenchi GC, Bernard V, Ravassard P, Pohl M, Gasnier B, Giros B, El Mestikawy S (2002) A third vesicular glutamate transporter expressed by cholinergic and serotoninergic neurons. J Neurosci 22:5442–5451

    CAS  PubMed  Google Scholar 

  • Graziano A, Liu XB, Murray KD, Jones EG (2008) Vesicular glutamate transporters define two sets of glutamatergic afferents to the somatosensory thalamus and two thalamocortical projections in the mouse. J Comp Neurol. 507(2):1258–1276

    Article  CAS  PubMed  Google Scholar 

  • Greenough WT, Black JE, Wallace CS (1987) Experience and brain development. Child Dev 58:539–559

    Article  CAS  PubMed  Google Scholar 

  • Groome LJ, Mooney DM, Holland SB, Smith LA, Atterbury JL, Dykman RA (1999) Behavioral state affects heart rate response to low-intensity sound in human fetuses. Early Hum Dev 54:39–54

    Article  CAS  PubMed  Google Scholar 

  • Hackett TA, de la Mothe LA (2009) Regional and laminar distribution of the vesicular glutamate transporter, VGluT2, in the macaque monkey auditory cortex. J Chem Neuroanat 38(2):106–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hackett TA, Takahata T, Balaram P (2011) VGLUT1 and VGLUT2 mRNA expression in the primate auditory pathway. Hear Res 274(1–2):129–141

    Article  CAS  PubMed  Google Scholar 

  • Hadlock FP, Deter RL, Harrist RB, Park SK (1982) Fetal head circumference: relation to menstrual age AJR. Am J Roentgenol 138(4):649–653

    Article  CAS  Google Scholar 

  • Hashikawa T, Molinari M, Rausell E, Jones EG (1995) Patchy and laminar termination of medial geniculate axons in monkey auditory cortex. J Comp Neurol 362:195–208

    Article  CAS  PubMed  Google Scholar 

  • Haynes RL, Borenstein NS, Desilva TM, Folkerth RD, Liu LG, Volpe JJ, Kinney HC (2005) Axonal development in the cerebral white matter of the human fetus and infant. J Comp Neurol 484:156–167

    Article  PubMed  Google Scholar 

  • He H, Mahnke AH, Doyle S, Fan N, Wang C-C, Hall BJ, Ya-Ping Tang Y-P, Inglis FM, Chen C, Erickson JD (2012) Neurodevelopmental role for VGLUT2 in pyramidal neuron plasticity, dendritic refinement, and in spatial learning. J. Neuroscience 32(45):15886–15901

    Article  CAS  PubMed  Google Scholar 

  • Herzog E, Bellenchi GC, Gras C, Bernard V, Ravassard P, Bedet C, Gasnier B, Giros B, El Mestikawy S (2001) The existence of a second vesicular glutamate transporter specifies subpopulations of glutamatergic neurons. J Neurosci 21:RC181

    CAS  PubMed  Google Scholar 

  • Hevner RF (2000) Development of connections in the human visual system during fetal mid-gestation: a DiI-tracing study. J Neuropathol Exp Neurol 59:385–392

    Article  CAS  PubMed  Google Scholar 

  • Higashijima S, Mandel G, Fetcho JR (2004) Distribution of prospective glutamatergic, glycinergic, and GABAergic neurons in embryonic and larval zebra fish. J Comp Neurol 480:1–18

    Article  CAS  PubMed  Google Scholar 

  • Hioki H, Fujiyama F, Taki K, Tomioka R, Furuta T, Tamamaki N, Kaneko T (2003) Differential distribution of vesicular glutamate transporters in the rat cerebellar cortex. Neuroscience 117:1–6

    Article  CAS  PubMed  Google Scholar 

  • Hirokawa N, Glicksman MA, Willard MB (1984) Organization of mammalian neurofilament polypeptides within the neuronal cytoskeleton. J Cell Biol 98:1523–1536

    Article  CAS  PubMed  Google Scholar 

  • Hisano S, Hoshi K, Ikeda Y, Maruyama D, Kanemoto M, Ichijo H, Kojima I, Takeda J, Nogami H (2000) Regional expression of a gene encoding a neuron-specific Na(+)-dependent inorganic phosphate cotransporter (DNPI) in the rat forebrain. Brain Res Mol Brain Res 83:34–43

    Article  CAS  PubMed  Google Scholar 

  • Hisano S, Sawada K, Kawano M, Kanemoto M, Xiong G, Mogi K, Sakata-Haga H, Takeda J, Fukui Y, Nogami H (2002) Expression of inorganic phosphate/vesicular glutamate transporters (BNPI/VGLUT1 and DNPI/VGLUT2) in the cerebellum and precerebellar nuclei of the rat. Brain Res Mol Brain Res 107:23–31

    Article  CAS  PubMed  Google Scholar 

  • Hoffman PN, Lasek RJ (1975) The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons. J Cell Biol 66:351–366

    Article  CAS  PubMed  Google Scholar 

  • Huttenlocher PR, Dabholkar AS (1997) Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol. 387(2):167–178

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Oliver DL (2010) Origins of glutamatergic terminals in the inferior colliculus identified by retrograde transport and expression of VGLUT1 and VGLUT2 genes. Front Neuroanat 4:135. doi:10.3389/fnana.2010.00135

    Article  PubMed  PubMed Central  Google Scholar 

  • Iyengar S, Bottjer SW (2002) Development of individual axon arbors in a thalamocortical circuit necessary for song learning in zebra finches. J Neurosci 22:901–911

    CAS  PubMed  Google Scholar 

  • Jiao Y, Sun Z, Lee T, Fusco FR, Kimble TD, Meade CA, Cuthbertson S, Reiner A (1999) A simple and sensitive antigen retrieval method for free-floating and slide-mounted tissue sections. J Neurosci Methods 93(2):149–162

    Article  CAS  PubMed  Google Scholar 

  • Jones EG (1998) Viewpoint: the core and matrix of thalamic organization. Neuroscience 85(2):331–345

    Article  CAS  PubMed  Google Scholar 

  • Jones EG (2007) The Thalamus. University Press, Cambridge

    Google Scholar 

  • Kaneko T, Fujiyama F (2002) Complementary distribution of vesicular glutamate transporters in the central nervous system. Neurosci Res 42:243–250

    Article  CAS  PubMed  Google Scholar 

  • Kaneko T, Fujiyama F, Hioki H (2002) Immunohistochemical localization of candidates for vesicular glutamate transporters in the rat brain. J Comp Neurol. 444(1):39–62

    Article  CAS  PubMed  Google Scholar 

  • Kharazia VN, Weinberg RJ (1994) Glutamate in thalamic fibers terminating in layer IV of primary sensory cortex. J Neurosci 14:6021–6032

    CAS  PubMed  Google Scholar 

  • Kinney HC, Brody BA, Kloman AS, Gilles FH (1988) Sequence of central nervous system myelination in human infancy. II. Patterns of myelination in autopsied infants. J Neuropathol Exp Neurol 47:217–234

    Article  CAS  PubMed  Google Scholar 

  • Kisilevsky BS, Hains SM, Lee K, Xie X, Huang H, Ye HH, Zhang K, Wang Z (2003) Effects of experience on fetal voice recognition. Psychol Sci 14:220–224

    Article  PubMed  Google Scholar 

  • Kostovic I, Jovanov-Milosevic N (2006) The development of cerebral connections during the first 20–45 weeks’ gestation. Semin Fetal Neonatal Med 11:415–422

    Article  PubMed  Google Scholar 

  • Kostovic I, Judas M (2010) The development of the subplate and thalamocortical connections in the human foetal brain. Acta Paediatr 99:1119–1127

    Article  PubMed  Google Scholar 

  • Krmpotic-Nemanic J, Kostovic I, Kelovic Z, Nemanic D (1980) Development of acetylcholinesterase (AChE) staining in human fetal auditory cortex. Acta Otolaryngol 89:388–392

    Article  CAS  PubMed  Google Scholar 

  • Krmpotic-Nemanic J, Kostovic I, Kelovic Z, Nemanic D, Mrzljak L (1983) Development of the human fetal auditory cortex: growth of afferent fibres. Acta Anat (Basel) 116:69–73

    Article  CAS  Google Scholar 

  • LeDoux JE, Farb CR (1991) Neurons of the acoustic thalamus that project to the amygdala contain glutamate. Neurosci Lett 134:145–149

    Article  CAS  PubMed  Google Scholar 

  • Lee CC, Sherman SM (2011) On the classification of pathways in the auditory midbrain, thalamus, and cortex. Hearing Res 276:79–87

    Article  Google Scholar 

  • Liguz-Lecznar M, Skangiel-Kramska J (2007) Vesicular glutamate transporters VGLUT1 and VGLUT2 in the developing mouse barrel cortex. Int J Dev Neurosci 2:107–114

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta CT) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Luethke LE, Krubitzer LA, Kaas JH (1989) Connections of primary auditory cortex in the New World monkey. Saguinus. J Comp. Neurol. 285:487–513

    Article  CAS  PubMed  Google Scholar 

  • Luo L, O’Leary DD (2005) Axon retraction and degeneration in development and disease. Annu Rev Neurosci 28:127–156

    Article  CAS  PubMed  Google Scholar 

  • Martin R, Door R, Ziegler A, Warchol W, Hahn J, Breitig D (1999) Neurofilament phosphorylation and axon diameter in the squid giant fiber system. Neuroscience 88:327–336

    Article  CAS  PubMed  Google Scholar 

  • McArthur G, Bishop D (2002) Event-related potentials reflect individual differences in age-invariant auditory skills. NeuroReport 13:1079–1082

    Article  PubMed  Google Scholar 

  • Miyazaki T, Fukaya M, Shimizu H, Watanabe M (2003) Subtype switching of vesicular glutamate transporters at parallel fiber-Purkinje cell synapses in developing mouse cerebellum. Eur J Neurosci 17(12):2563–2572

    Article  PubMed  Google Scholar 

  • Moore JK, Guan YL (2001) Cytoarchitectural and axonal maturation in human auditory cortex. J Assoc Res Otolaryngol 2:297–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore JK, Linthicum FH Jr (2007) The human auditory system: a timeline of development. Int J Audiol 46(9):460–478

    Article  PubMed  Google Scholar 

  • Moore JK, Perazzo LM, Braun A (1995) Time course of axonal myelination in the human brainstem auditory pathway. Hear Res 87:21–31

    Article  CAS  PubMed  Google Scholar 

  • Moore JK, Guan YL, Shi SR (1997) Axogenesis in the human fetal auditory system, demonstrated by neurofilament immunohistochemistry. Anat Embryol (Berl) 195:15–30

    Article  CAS  Google Scholar 

  • Moyer CE, Delevich KM, Fish KN, Asafu-Adjei JK, Sampson AR, Dorph-Petersen KA, Lewis DA, Sweet RA (2013) Intracortical excitatory and thalamocortical boutons are intact in primary auditory cortex in schizophrenia. Schizophr Res 149(1–3):127–134

    Article  PubMed  PubMed Central  Google Scholar 

  • Murthy VN, Schikorski T, Stevens CF, Zhu Y (2001) Inactivity Produces Increases in Neurotransmitter Release and Synapse Size. Neuron 32(4):673–682

    Article  CAS  PubMed  Google Scholar 

  • Nahmani M, Erisir A (2005) VGluT2 immunochemistry identifies thalamocortical terminals in layer 4 of adult and developing visual cortex. J Comp Neurol. 484(4):458–473

    Article  CAS  PubMed  Google Scholar 

  • Nakamura K, Hioki H, Fujiyama F, Kaneko T (2005) Postnatal changes of vesicular glutamate transporter (VGluT)1 and VGluT2 immunoreactivities and their colocalization in the mouse forebrain. J Comp Neurol 492:263–288

    Article  CAS  PubMed  Google Scholar 

  • Ni B, Rosteck PR, Nadi NS, Paul SM (1994) Cloning and expression of a cDNA encoding a brain-specific Na(+)-dependent inorganic phosphate cotransporter. Proc Natl Acad Sci USA 91:5607–5611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niimi K, Kuwahara E (1973) The dorsal thalamus of the cat and comparison with monkey and man. J Hirnforsch 14:303–325

    CAS  PubMed  Google Scholar 

  • Oberlaender M, Ramirez A, Bruno RM (2012) Sensory experience restructures thalamocortical axons during adulthood. Neuron 74(4):648–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oni-Orisan A, Kristiansen LV, Haroutunian V, Meador-Woodruff JH, McCullumsmith RE (2008) Altered vesicular glutamate transporter expression in the anterior cingulate cortex in schizophrenia. Biol Psychiatry 63:766–775

    Article  CAS  PubMed  Google Scholar 

  • Paus T, Zijdenbos A, Worsley K, Collins DL, Blumenthal J, Giedd JN, Rapoport JL, Evans AC (1999) Structural maturation of neural pathways in children and adolescents: in vivo study. Science 283:1908–1911

    Article  CAS  PubMed  Google Scholar 

  • Paus T, Keshavan M, Giedd JN (2008) Why do many psychiatric disorders emerge during adolescence? Nat Rev Neurosci 9(12):947–957

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perin MS, Fried VA, Mignery GA, Jahn R, Südhof TC (1990) Phospholipid binding by a synaptic vesicle protein homologous to the regulatory region of protein kinase C. Nature 345:260–263

    Article  CAS  PubMed  Google Scholar 

  • Ponton CW, Moore JK, Eggermont JJ (1996) Auditory brain stem response generation by parallel pathways: differential maturation of axonal conduction time and synaptic transmission. Ear Hear 17:402–410

    Article  CAS  PubMed  Google Scholar 

  • Ponton C, Eggermont JJ, Kwong B, Don M (2000) Maturation of human central auditory system activity: evidence from multi-channel evoked potentials. Clin Neurophysiol 111:220–236

    Article  CAS  PubMed  Google Scholar 

  • Ponton C, Eggermont JJ, Khosla D, Kwong B, Don M (2002) Maturation of human central auditory system activity: separating auditory evoked potentials by dipole source modeling. Clin Neurophysiol 113:407–420

    Article  PubMed  Google Scholar 

  • Poulsen C, Picton TW, Paus T (2007) Age-related changes in transient and oscillatory brain responses to auditory stimulation in healthy adults 19–45 years old. Cereb Cortex 17(6):1454–1467

    Article  PubMed  Google Scholar 

  • Pundir AS, Hameed LS, Dikshit PC, Kumar P, Mohan S, Radotra B, Shankar SK, Mahadevan A, Iyengar S (2012) Expression of medium and heavy chain neurofilaments in the developing human auditory cortex. Brain Struct Funct. 217(2):303–321

    Article  CAS  PubMed  Google Scholar 

  • Purdy SC, Kelly AS, Thorne PR (2001) Auditory evoked potentials as measures of plasticity in humans. Audiol Neurootol 6(4):211–215

    Article  CAS  PubMed  Google Scholar 

  • Querleu D, Renard X, Boutteville C, Crepin G (1989) Hearing by the human fetus? Semin Perinatol 13:409–420

    CAS  PubMed  Google Scholar 

  • Rakic P, Bourgeois J-P, Eckenhoff MF, Zecevic N, Goldman-Rakic PS (1986) Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. Science 232:232–235

    Article  CAS  PubMed  Google Scholar 

  • Rivier F, Clarke S (1997) Cytochrome oxidase, acetylcholinesterase, and NADPH-diaphorase staining in human supratemporal and insular cortex: evidence for multiple auditory areas. Neuroimage 6:288–304

    Article  CAS  PubMed  Google Scholar 

  • Rosin PL (2001) Unimodal thresholding. Pattern Recogn 34:2083–2096

    Article  Google Scholar 

  • Rubio-Garrido P, Pérez-de-Manzo F, Porrero C, Galazo MJ, Clascá F (2009) Thalamic input to distal apical dendrites in neocortical layer 1 is massive and highly convergent. Cereb Cortex 19(10):2380–2395

    Article  PubMed  Google Scholar 

  • Sailaja K, Ahuja RK, Gopinath G (1996) Biparietal diameter: a useful measure for determining gestational age of human abortuses. Natl Med J India 9:165–167

    CAS  PubMed  Google Scholar 

  • Schäfer MK, Varoqui H, Defamie N, Weihe E, Erickson JD (2002) Molecular cloning and functional identification of mouse vesicular glutamate transporter 3 and its expression in subsets of novel excitatory neurons. J Biol Chem 277:50734–50748

    Article  PubMed  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  Google Scholar 

  • Seki T, Arai Y (1999) Different polysialic acid-neural cell adhesion molecule expression patterns in distinct types of mossy fiber boutons in the adult hippocampus. J Comp Neurol 410:115–125

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Dorman MF (2006) Central auditory development in children with cochlear implants: clinical implications. Adv Otorhinolaryngol 64:66–88

    PubMed  Google Scholar 

  • Sharma A, Dorman MF, Kral A (2005) The influence of a sensitive period on central auditory development in children with unilateral and bilateral cochlear implants. Hear Res 203(1–2):134–143

    Article  PubMed  Google Scholar 

  • Shea TB, Sihag RK, Nixon RA (1988) Neurofilament triplet proteins of NB2a/dl neuroblastoma: posttranslational modification and incorporation into the cytoskeleton during differentiation. Dev Brain Res 43:97–109

    Article  CAS  Google Scholar 

  • Shea TB, Beermann ML, Nixon RA (1989) Appearance and localization of pho horylated variants of the high molecular neurofilament protein in NB2a/dl cytoskeletons during differentiation. Dev Brain Res 50:142–146

    Article  CAS  Google Scholar 

  • Sousa-Pinto A (1973) Cortical projections of the medial geniculate body in the cat. Adv Anat Embryol Cell Biol 48:1–42

    Google Scholar 

  • Starr A, Amlie RN, Martin WH, Sanders S (1977) Development of auditory function in newborn infants revealed by auditory brainstem potentials. Pediatrics 60:831–839

    CAS  PubMed  Google Scholar 

  • Südhof TC (2002) Synaptotagmins: why so many? J Biol Chem 277(10):7629–7632

    Article  PubMed  CAS  Google Scholar 

  • Takamori S, Rhee JS, Rosenmund C, Jahn R (2000) Identification of a vesicular glutamate transporter that defines a glutamatergic phenotype in neurons. Nature 407:189–194

    Article  CAS  PubMed  Google Scholar 

  • Tapscott SJ, Bennett GS, Holtzer H (1981) Neuronal precursor cells in the chick neural tube express neurofilament proteins. Nature 292:836–838

    Article  CAS  PubMed  Google Scholar 

  • Tardif E, Clarke S (2001) Intrinsic connectivity of human auditory areas: a tracing study with DiI. Eur J Neurosci 13:1045–1050

    Article  CAS  PubMed  Google Scholar 

  • Thomson AM (2000) Facilitation, augmentation and potentiation at central synapses. Trends Neurosci 23:305–312

    Article  CAS  PubMed  Google Scholar 

  • Trainor L, McFadden M, Hodgson L, Darragh L, Barlow J, Matsos L, Sonnadara R (2003) Changes in auditory cortex and the development of mismatch negativity between 2 and 6 months of age. Int J Psychophysiol 51:5–15

    Article  PubMed  Google Scholar 

  • Trehub SE (1976) The discrimination of foreign speech contrasts by infants and adults. Child Dev 47:466–472

    Article  Google Scholar 

  • Ulfig N, Nickel J, Bohl J (1998) Monoclonal antibodies SMI 311 and SMI 312 as tools to investigate the maturation of nerve cells and axonal patterns in human fetal brain. Cell Tissue Res 291:433–443

    Article  CAS  PubMed  Google Scholar 

  • Viaene AN, Petrof I, Sherman SM (2011a) Synaptic properties of thalamic input to layers 2/3 and 4 of primary somatosensory and auditory cortices. J Neurophysiol 105(1):279–292

    Article  PubMed  Google Scholar 

  • Viaene AN, Petrof I, Sherman SM (2011b) Synaptic properties of thalamic input to the subgranular layers of primary somatosensory and auditory cortices in the mouse. J Neurosci 31:12738–12747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Economo C, Koskinas GN (1925) Die Cytoarchitectonik der Hirnrinde des erwachsenen Menschen. Julius Springer, Berlin

    Google Scholar 

  • Weickert CS, Sheedy D, Rothmond DA, Dedova I, Fung S, Garrick T, Wong J, Harding AJ, Sivagnanansundaram S, Hunt C, Duncan C, Sundqvist N, Tsai S-Y, Anand J, Draganic D, Harper C (2010) Selection of reference gene expression in a schizophrenia brain cohort. Aust N Z J Psychiatry 44(1):59–70

    Article  PubMed  PubMed Central  Google Scholar 

  • Weitzman WD, Graziani LJ (1968) Maturation and topography of the auditory evoked response of the prematurely born infant. Dev Psychobiol 1:79–89

    Article  Google Scholar 

  • Weston MC, Nehring RB, Wojcik SM, Rosenmund C (2011) Interplay between VGLUT isoforms and endophilin A1 regulates neurotransmitter release and short-term plasticity. Neuron 69:1147–1159

    Article  CAS  PubMed  Google Scholar 

  • Wimmer VC, Bruno RM, de Kock CPJ, Kuner T, Sakmann B (2010) Dimensions of a projection column and architecture of VPM and POm axons in rat vibrissal cortex. Cereb Cortex 20(10):2265–2276

    Article  PubMed  PubMed Central  Google Scholar 

  • Winer JA, Chernock ML, Larue DT, Cheung SW (2002) Descending projections to the inferior colliculus from the posterior thalamus and the auditory cortex in rat, cat, and monkey. Hear Res 168(1–2):181–195

    Article  PubMed  Google Scholar 

  • Winer JA, Miller LM, Lee CC, Schreiner CE (2005) Auditory thalamocortical transformation: structure and function. Trends in Neurosci. 28(5):256–263

    Article  CAS  Google Scholar 

  • Wojcik SM, Rhee JS, Herzog E, Sigler A, Jahn R, Takamori S, Brose N, Rosenmund C (2004) An essential role for vesicular glutamate transporter 1 (VGLUT1) in postnatal development and control of quantal size. Proc Natl Acad Sci USA 101:7158–7163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong P, Kaas JH (2010) Architectonic subdivisions of neocortex in the Galago (Otolemur garnetti). Anat Rec (Hoboken) 293(6):1033–1069

    Article  Google Scholar 

  • Wunderlich JL, Cone-Wesson BK (2006) Maturation of CAEP in infants and children: a review. Hear Res 212(1–2):212–223

    Article  PubMed  Google Scholar 

  • Yakolev PL, Lecours AR (1967) The myelogenetic cycles of regional maturation of the brain. In: Minkowski A (ed) Regional development of the brain in early life. Blackwell, Oxford, pp 3–70

    Google Scholar 

  • Yuan A, Sershen H, Veeranna Basavarajappa BS, Kumar A, Hashim A, Berg M, Lee JH, Sato Y, Rao MV, Mohan PS, Dyakin V, Julien JP, Lee VM-Y, Nixon RA (2015) Neurofilament subunits are integral components of synapses and modulate neurotransmission and behavior in vivo. Mol. Psychiatry 20:986–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by intramural funds from the National Brain Research Centre, Manesar. The authors gratefully acknowledge the support provided by NBRC and Dr. OP Sharma for setting up the collection of post-mortem tissue and Ram Mehar (NBRC, Manesar) for technical support. We are also grateful to Dr. Supriya Bhavnani (NBRC, Manesar), Himanshu Malhotra and Prof. Manoj Raje (IMTECH, Chandigarh) for help with confocal microscopy and Dr. V.Rema (NBRC, Manesar) and the reviewers for their insightful comments which helped improve this manuscript. This study was supported initially by a grant from the Department of Biotechnology, India (BT/PR5373/MED/14/630/2004) to SI and funds from NBRC, Manesar, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumya Iyengar.

Additional information

A. S. Pundir and U. A. Singh have contributed equally to this manuscript.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pundir, A.S., Singh, U.A., Ahuja, N. et al. Growth and refinement of excitatory synapses in the human auditory cortex. Brain Struct Funct 221, 3641–3674 (2016). https://doi.org/10.1007/s00429-015-1124-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-015-1124-6

Keywords

Navigation