Skip to main content
Log in

Enhanced expression of potassium-chloride cotransporter KCC2 in human temporal lobe epilepsy

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Synaptic reorganization in the epileptic hippocampus involves altered excitatory and inhibitory transmission besides the rearrangement of dendritic spines, resulting in altered excitability, ion homeostasis, and cell swelling. The potassium-chloride cotransporter-2 (KCC2) is the main chloride extruder in neurons and hence will play a prominent role in determining the polarity of GABAA receptor-mediated chloride currents. In addition, KCC2 also interacts with the actin cytoskeleton which is critical for dendritic spine morphogenesis, and for the maintenance of glutamatergic synapses and cell volume. Using immunocytochemistry, we examined the cellular and subcellular levels of KCC2 in surgically removed hippocampi of temporal lobe epilepsy (TLE) patients and compared them to control human tissue. We also studied the distribution of KCC2 in a pilocarpine mouse model of epilepsy. An overall increase in KCC2-expression was found in epilepsy and confirmed by Western blots. The cellular and subcellular distributions in control mouse and human samples were largely similar; moreover, changes affecting KCC2-expression were also alike in chronic epileptic human and mouse hippocampi. At the subcellular level, we determined the neuronal elements exhibiting enhanced KCC2 expression. In epileptic tissue, staining became more intense in the immunopositive elements detected in control tissue, and profiles with subthreshold expression of KCC2 in control samples became labelled. Positive interneuron somata and dendrites were more numerous in epileptic hippocampi, despite severe interneuron loss. Whether the elevation of KCC2-expression is ultimately a pro- or anticonvulsive change, or both—behaving differently during ictal and interictal states in a context-dependent manner—remains to be established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CA:

Cornu Ammonis

DAB:

3,3‘diamino-benzidine 4 HCl

DG:

Dentate gyrus

EEG:

Electroencephalogram

GABA:

Gamma-aminobutyric acid

GluR1:

Glutamate receptor 1

KCC2:

Potassium-chloride cotransporter-2

PET:

Positron emission tomography

Pilo:

Pilocarpine

SE:

Status epilepticus

Str:

Stratum

SPECT:

Single-photon emission computerized tomography

TLE:

Temporal lobe epilepsy

References

  • Aronica E et al (2007) Differential expression patterns of chloride transporters, Na+ -K+ -2Cl–cotransporter and K + -Cl–cotransporter, in epilepsy-associated malformations of cortical development. Neuroscience 145:185–196

    Article  CAS  PubMed  Google Scholar 

  • Babb TL et al (1989) Glutamate decarboxylase-immunoreactive neurons are preserved in human epileptic hippocampus. J Neurosci 9:2562–2574

    CAS  PubMed  Google Scholar 

  • Baldi R, Varga C, Tamas G (2010) Differential distribution of KCC2 along the axo-somato-dendritic axis of hippocampal principal cells. Eur J Neurosci 32:1319–1325

    Article  PubMed  Google Scholar 

  • Barmashenko G et al (2011) Positive shifts of the GABAA receptor reversal potential due to altered chloride homeostasis is widespread after status epilepticus. Epilepsia 52:1570–1578

    Article  CAS  PubMed  Google Scholar 

  • Blackwood, W., Corsellis, J.A.N., 1976. Greenfield’s Neuropathology, Vol Edward Arnold, London

  • Bragin DE et al (2009) Development of epileptiform excitability in the deep entorhinal cortex after status epilepticus. Eur J Neurosci 30:611–624

    Article  PubMed  PubMed Central  Google Scholar 

  • Buckmaster PS, Dudek FE (1997) Neuron loss, granule cell axon reorganization, and functional changes in the dentate gyrus of epileptic kainate-treated rats. J Comp Neurol 385:385–404

    Article  CAS  PubMed  Google Scholar 

  • Cavalheiro EA, Santos NF, Priel MR (1996) The pilocarpine model of epilepsy in mice. Epilepsia 37:1015–1019

    Article  CAS  PubMed  Google Scholar 

  • Cohen I et al (2002) On the origin of interictal activity in human temporal lobe epilepsy in vitro. Science 298:1418–1421

    Article  CAS  PubMed  Google Scholar 

  • Colder BW et al (1996) Decreased neuronal burst discharge near site of seizure onset in epileptic human temporal lobes. Epilepsia 37:113–121

    Article  CAS  PubMed  Google Scholar 

  • Conti L et al (2011) Anomalous levels of Cl- transporters cause a decrease of GABAergic inhibition in human peritumoral epileptic cortex. Epilepsia 52:1635–1644

    Article  CAS  PubMed  Google Scholar 

  • Corsellis JAN (1955) The incidence of Ammon’s horn sclerosis. Brain 80:193–208

    Article  Google Scholar 

  • Cossart R et al (2001) Dendritic but not somatic GABAergic inhibition is decreased in experimental epilepsy. Nat Neurosci 4:52–62

    Article  CAS  PubMed  Google Scholar 

  • de Curtis M, Gnatkovsky V (2009) Reevaluating the mechanisms of focal ictogenesis: the role of low-voltage fast activity. Epilepsia 50:2514–2525

    Article  PubMed  Google Scholar 

  • de Lanerolle NC et al (1988) Evidence for hippocampal interneuron loss in human temporal lobe epilepsy. Epilepsia 29:674

    Google Scholar 

  • de Lanerolle NC et al (1989) Hippocampal interneuron loss and plasticity in human temporal lobe epilepsy. Brain Res 495:387–395

    Article  PubMed  Google Scholar 

  • de Lanerolle NC et al (2003) A retrospective analysis of hippocampal pathology in human temporal lobe epilepsy: evidence for distinctive patient subcategories. Epilepsia 44:677–687

    Article  PubMed  Google Scholar 

  • Fiumelli H et al (2013) An ion transport-independent role for the cation-chloride cotransporter KCC2 in dendritic spinogenesis in vivo. Cereb Cortex 23:378–388

    Article  PubMed  Google Scholar 

  • Freund TF, Buzsaki G (1996) Interneurons of the hippocampus. Hippocampus 6:347–470

    Article  CAS  PubMed  Google Scholar 

  • Fujiwara-Tsukamoto Y et al (2003) Excitatory GABA input directly drives seizure-like rhythmic synchronization in mature hippocampal CA1 pyramidal cells. Neuroscience 119:265–275

    Article  CAS  PubMed  Google Scholar 

  • Galanopoulou AS (2008) Dissociated gender-specific effects of recurrent seizures on GABA signaling in CA1 pyramidal neurons: role of GABA(A) receptors. J Neurosci 28:1557–1567

    Article  CAS  PubMed  Google Scholar 

  • Gauvain G et al (2011) The neuronal K-Cl cotransporter KCC2 influences postsynaptic AMPA receptor content and lateral diffusion in dendritic spines. Proc Natl Acad Sci USA 108:15474–15479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gnatkovsky V et al (2008) Fast activity at seizure onset is mediated by inhibitory circuits in the entorhinal cortex in vitro. Ann Neurol 64:674–686

    Article  PubMed  Google Scholar 

  • Green, R.C., 1991. Neuropathology and behavior in epilepsy. In: Epilepsy and Behavior. Vol ed. Wiley pp 345–359

  • Gulyas AI et al (2001) The KCl cotransporter, KCC2, is highly expressed in the vicinity of excitatory synapses in the rat hippocampus. Eur J Neurosci 13:2205–2217

    Article  CAS  PubMed  Google Scholar 

  • Heinemann U et al (2000) Alterations of glial cell function in temporal lobe epilepsy. Epilepsia 41:S185–S189

    Article  PubMed  Google Scholar 

  • Hoffmann EK, Dunham PB (1995) Membrane mechanisms and intracellular signalling in cell volume regulation. Int Rev Cytol 161:173–262

    Article  CAS  PubMed  Google Scholar 

  • Houser CR (1991) GABA neurons in seizure disorders: a review of immunocytochemical studies. Neurochem Res 16:295–308

    Article  CAS  PubMed  Google Scholar 

  • Huberfeld G et al (2007) Perturbed chloride homeostasis and GABAergic signaling in human temporal lobe epilepsy. J Neurosci 27:9866–9873

    Article  CAS  PubMed  Google Scholar 

  • Isokawa M (2000) Remodeling dendritic spines of dentate granule cells in temporal lobe epilepsy patients and the rat pilocarpine model. Epilepsia 41(Suppl 6):S14–S17

    Article  PubMed  Google Scholar 

  • Jaenisch N, Witte OW, Frahm C (2010) Downregulation of potassium chloride cotransporter KCC2 after transient focal cerebral ischemia. Stroke 41:e151–e159

    Article  CAS  PubMed  Google Scholar 

  • Kahle KT et al (2013) Modulation of neuronal activity by phosphorylation of the K–Cl cotransporter KCC2. Trends Neurosci 36:726–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaila K et al (1997) Long-lasting GABA-mediated depolarization evoked by high-frequency stimulation in pyramidal neurons of rat hippocampal slice is attributable to a network-driven, bicarbonate-dependent K+ transient. J Neurosci 17:7662–7672

    CAS  PubMed  Google Scholar 

  • Kaila K et al (2014a) Cation-chloride cotransporters in neuronal development, plasticity and disease. Nat Rev Neurosci 15:637–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaila K et al (2014b) GABA actions and ionic plasticity in epilepsy. Curr Opin Neurobiol 26:34–41

    Article  CAS  PubMed  Google Scholar 

  • Karlocai MR et al (2011) Redistribution of CB1 Cannabinoid Receptors in the Acute and Chronic Phases of Pilocarpine-Induced Epilepsy. PLoS One 6:e27196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lang F et al (1998) Functional significance of cell volume regulatory mechanisms. Physiol Rev 78:247–306

    CAS  PubMed  Google Scholar 

  • Laurberg S, Zimmer J (1981) Lesion-induced sprouting of hippocampal mossy fiber collaterals to the fascia dentata in developing and adult rats. J Comp Neurol 200:433–459

    Article  CAS  PubMed  Google Scholar 

  • Li H et al (2007) KCC2 interacts with the dendritic cytoskeleton to promote spine development. Neuron 56:1019–1033

    Article  CAS  PubMed  Google Scholar 

  • Li X et al (2008) Long-term expressional changes of Na + -K + -Cl- co-transporter 1 (NKCC1) and K + -Cl- co-transporter 2 (KCC2) in CA1 region of hippocampus following lithium-pilocarpine induced status epilepticus (PISE). Brain Res 1221:141–146

    Article  CAS  PubMed  Google Scholar 

  • Loscher W, Puskarjov M, Kaila K (2013) Cation-chloride cotransporters NKCC1 and KCC2 as potential targets for novel antiepileptic and antiepileptogenic treatments. Neuropharmacology 69:62–74

    Article  PubMed  Google Scholar 

  • Lowenstein DH et al (1992) Selective vulnerability of dentate hilar neurons following traumatic brain injury: a potential mechanistic link between head trauma and disorders of the hippocampus. J Neurosci 12:4846–4853

    CAS  PubMed  Google Scholar 

  • Magloczky Z (2010) Sprouting in human temporal lobe epilepsy: excitatory pathways and axons of interneurons. Epilepsy Res 89:52–59

    Article  PubMed  Google Scholar 

  • Magloczky Z, Freund TF (1993) Selective neuronal death in the contralateral hippocampus following unilateral kainate injections into the CA3 subfield. Neuroscience 56:317–335

    Article  CAS  PubMed  Google Scholar 

  • Magloczky Z, Freund TF (2005) Impaired and repaired inhibitory circuits in the epileptic human hippocampus. Trends Neurosci 28:334–340

    Article  CAS  PubMed  Google Scholar 

  • Magloczky Z et al (1997) Loss of Calbindin-D28 K immunoreactivity from dentate granule cells in human temporal lobe epilepsy. Neuroscience 76:377–385

    Article  CAS  PubMed  Google Scholar 

  • Magloczky Z et al (2000) Changes in the distribution and connectivity of interneurons in the epileptic human dentate gyrus. Neuroscience 96:7–25

    Article  CAS  PubMed  Google Scholar 

  • Magloczky Z et al (2010) Dynamic changes of CB1-receptor expression in hippocampi of epileptic mice and humans. Epilepsia 51(Suppl 3):115–120

    Article  PubMed  PubMed Central  Google Scholar 

  • Margerison JH, Corsellis JAN (1966) Epilepsy and the temporal lobe. Brain 89:499–530

    Article  CAS  PubMed  Google Scholar 

  • Martin JL, Sloviter RS (2001) Focal inhibitory interneuron loss and principal cell hyperexcitability in the rat hippocampus after microinjection of a neurotoxic conjugate of saporin and a peptidase-resistant analog of Substance P. J Comp Neurol 436:127–152

    Article  CAS  PubMed  Google Scholar 

  • Mathern GW, Babb TL, Armstrong DL (1997a) Hippocampal Sclerosis. In: Epilepsy: A Comprehensive Textbook. Vol 13 J.J. Engel, T.A. Pedley, ed. Lipincott-Raven, Philadelphia, pp 133–155

  • Mathern GW et al (1997b) Human hippocampal AMPA and NMDA mRNA levels in temporal lobe epilepsy patients. Brain 120:1937–1959

    Article  PubMed  Google Scholar 

  • Mathern GW et al (1998) Altered hippocampal kainate-receptor mRNA levels in temporal lobe epilepsy patients. Neurobiol Dis 5:151–176

    Article  CAS  PubMed  Google Scholar 

  • McNamara JO (1999) Emerging insights into the genesis of epilepsy. Nature 399:A15–A22

    Article  CAS  PubMed  Google Scholar 

  • Mello LE et al (1993) Circuit mechanisms of seizures in the pilocarpine model of chronic epilepsy: cell loss and mossy fiber sprouting. Epilepsia 34:985–995

    Article  CAS  PubMed  Google Scholar 

  • Mody I et al (1995) GABAergic inhibition of granule cells and hilar neuronal synchrony following ischemia-induced hilar neuronal loss. Neuroscience 69:139–150

    Article  CAS  PubMed  Google Scholar 

  • Munoz A et al (2007) Cation-chloride cotransporters and GABA-ergic innervation in the human epileptic hippocampus. Epilepsia 48:663–673

    Article  CAS  PubMed  Google Scholar 

  • Okabe A et al (2003) Changes in chloride homeostasis-regulating gene expressions in the rat hippocampus following amygdala kindling. Brain Res 990:221–226

    Article  CAS  PubMed  Google Scholar 

  • Papp E et al (2008) Relationship between neuronal vulnerability and potassium-chloride cotransporter 2 immunoreactivity in hippocampus following transient forebrain ischemia. Neuroscience 154:677–689

    Article  CAS  PubMed  Google Scholar 

  • Pathak HR et al (2007) Disrupted dentate granule cell chloride regulation enhances synaptic excitability during development of temporal lobe epilepsy. J Neurosci Off J Soc Neurosci 27:14012–14022

    Article  CAS  Google Scholar 

  • Payne JA (1997) Functional characterization of the neuronal-specific K–Cl cotransporter: implications for [K+]o regulation. Am J Physiol 273:C1516–C1525

    CAS  PubMed  Google Scholar 

  • Payne JA, Stevenson TJ, Donaldson LF (1996) Molecular characterization of a putative K-Cl cotransporter in rat brain. A neuronal-specific isoform. J Biol Chem 271:16245–16252

    Article  CAS  PubMed  Google Scholar 

  • Puskarjov M et al (2012) Activity-dependent cleavage of the K-Cl cotransporter KCC2 mediated by calcium-activated protease calpain. J Neurosci 32:11356–11364

    Article  CAS  PubMed  Google Scholar 

  • Puskarjov M et al (2014) A variant of KCC2 from patients with febrile seizures impairs neuronal Cl− extrusion and dendritic spine formation. EMBO Rep 15:723–729

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reid KH et al (2001) The mRNA level of the potassium-chloride cotransporter KCC2 covaries with seizure susceptibility in inferior colliculus of the post-ischemic audiogenic seizure-prone rat. Neurosci Lett 308:29–32

    Article  CAS  PubMed  Google Scholar 

  • Rivera C et al (1999) The K+/Cl− co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 397:251–255

    Article  CAS  PubMed  Google Scholar 

  • Rivera C et al (2002) BDNF-induced TrkB activation down-regulates the K+–Cl− cotransporter KCC2 and impairs neuronal Cl− extrusion. J Cell Biol 159:747–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robbins RJ et al (1991) A selective loss of somatostatin in the hippocampus of patients with temporal lobe epilepsy. Ann Neurol. 29:325–332

    Article  CAS  PubMed  Google Scholar 

  • Sedmak G, Jovanov-Miloševic N, Puskarjov M, Ulamec M, Krušlin B, Kaila K, Judas M (2015) Developmental expression patterns of KCC2 and functionally associated molecules in the human brain (Cerebral Cortex, in press)

  • Seress L et al (2009) Survival of mossy cells of the hippocampal dentate gyrus in humans with mesial temporal lobe epilepsy Clinical article. J Neurosurg 111:1237–1247

    Article  PubMed  Google Scholar 

  • Sloviter RS (1987) Decreased hippocampal inhibition and a selective loss of interneurons in experimental epilepsy. Science 235:73–76

    Article  CAS  PubMed  Google Scholar 

  • Smirnov S et al (1999) Pharmacological isolation of the synaptic and nonsynaptic components of the GABA-mediated biphasic response in rat CA1 hippocampal pyramidal cells. J Neurosci 19:9252–9260

    CAS  PubMed  Google Scholar 

  • Spencer DD, Spencer SS (1985) Surgery for epilepsy. Neurol Clin 3:313–330

    CAS  PubMed  Google Scholar 

  • Stein V, Nicoll RA (2003) GABA generates excitement. Neuron. 37:375–378

    CAS  PubMed  Google Scholar 

  • Stewart TH et al (2010) Chronic dysfunction of astrocytic inwardly rectifying K+ channels specific to the neocortical epileptic focus after fluid percussion injury in the rat. J Neurophysiol 104:3345–3360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutula T et al (1989) Mossy fiber synaptic reorganization in the epileptic human temporal lobe. Ann Neurol 26:321–330

    Article  CAS  PubMed  Google Scholar 

  • Swann JW et al (2000) Spine loss and other dendritic abnormalities in epilepsy. Hippocampus 10:617–625

    Article  CAS  PubMed  Google Scholar 

  • Szabadics J et al (2006) Excitatory effect of GABAergic axo-axonic cells in cortical microcircuits. Science 311:233–235

    Article  CAS  PubMed  Google Scholar 

  • Talos DM et al (2012) Altered inhibition in tuberous sclerosis and type IIb cortical dysplasia. Ann Neurol 71:539–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toth K et al (2007) Morphology and synaptic input of substance P receptor-immunoreactive interneurons in control and epileptic human hippocampus. Neuroscience 144:495–508

    Article  CAS  PubMed  Google Scholar 

  • Toth K et al (2010) Loss and reorganization of calretinin-containing interneurons in the epileptic human hippocampus. Brain 133:2763–2777

    Article  PubMed  PubMed Central  Google Scholar 

  • Urban Z, Magloczky Z, Freund TF (2002) Calretinin-containing interneurons innervate both principal cells and interneurons in the CA1 region of the human hippocampus. Acta Biol Hung 53:205–220

    Article  CAS  PubMed  Google Scholar 

  • Viitanen T et al (2010) The K+ -Cl cotransporter KCC2 promotes GABAergic excitation in the mature rat hippocampus. J Physiol 588:1527–1540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wake H et al (2007) Early changes in KCC2 phosphorylation in response to neuronal stress result in functional downregulation. The Journal of neuroscience. 27:1642–1650

    Article  CAS  PubMed  Google Scholar 

  • Williams JR et al (1999) The neuron-specific K-Cl cotransporter, KCC2. Antibody development and initial characterization of the protein. J Biol Chem 274:12656–12664

    Article  CAS  PubMed  Google Scholar 

  • Wilson CL (1999) Neurophysiology of epileptic limbic pathways in intact human temporal lobe. In: The Epilepsies. Etiologies and prevention. Vol. P.K.a.H.O. Lüders, ed. Academic Press, San Diego, USA, pp 171–179

  • Wilson CL et al (1998) Paired pulse suppression and facilitation in human epileptogenic hippocampal formation. Epilepsy Res 31:211–230

    Article  CAS  PubMed  Google Scholar 

  • Wittner L et al (2001) Preservation of perisomatic inhibitory input of granule cells in the epileptic human dentate gyrus. Neuroscience 108:587–600

    Article  CAS  PubMed  Google Scholar 

  • Wittner L et al (2002) Synaptic reorganization of calbindin-positive neurons in the human hippocampal CA1 region in temporal lobe epilepsy. Neuroscience 115:961–978

    Article  CAS  PubMed  Google Scholar 

  • Wittner L et al (2005) Surviving CA1 pyramidal cells receive intact perisomatic inhibitory input in the human epileptic hippocampus. Brain 128:138–152

    Article  CAS  PubMed  Google Scholar 

  • Ylinen A et al (1991) Behavioural, electrophysiological and histopathological changes following sustained stimulation of the perforant pathway input to the hippocampus: effect of the NMDA receptor antagonist, CGP 39551. Brain Res 553:195–200

    Article  CAS  PubMed  Google Scholar 

  • Zhang W et al (2009) Surviving hilar somatostatin interneurons enlarge, sprout axons, and form new synapses with granule cells in a mouse model of temporal lobe epilepsy. J Neurosci 29:14247–14256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu ZQ et al (1997) Disproportionate loss of CA4 parvalbumin-immunoreactive interneurons in patients with Ammon’s horn sclerosis. J Neuropathol Exp Neurol 56:988–998

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Drs. M. Palkovits, P. Sótonyi and Zs. Borostyánkői (Semmelweis University, Budapest) for providing control human tissue. We thank Mr. Gergő Botond for his helpful suggestions regarding Western blot experiments. The excellent technical assistance of Ms. E. Simon, K. Lengyel, Mr. Gy. Goda is also acknowledged. This study was supported by grants from OTKA 102802 Hungary, and NS030549NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mária R. Karlócai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3637 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karlócai, M.R., Wittner, L., Tóth, K. et al. Enhanced expression of potassium-chloride cotransporter KCC2 in human temporal lobe epilepsy. Brain Struct Funct 221, 3601–3615 (2016). https://doi.org/10.1007/s00429-015-1122-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-015-1122-8

Keywords

Navigation