Skip to main content
Log in

Distribution of oxytocin and co-localization with arginine vasopressin in the brain of mice

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Oxytocin (OT) and vasopressin (AVP) play a major role in social behaviours. Mice have become the species of choice for neurobiology of social behaviour due to identification of mouse pheromones and the advantage of genetically modified mice. However, neuroanatomical data on nonapeptidergic systems in mice are fragmentary, especially concerning the central distribution of OT. Therefore, we analyse the immunoreactivity for OT and its neurophysin in the brain of male and female mice (strain CD1). Further, we combine immunofluorescent detection of OT and AVP to locate cells co-expressing both peptides and their putative axonal processes. The results indicate that OT is present in cells of the neurosecretory paraventricular (Pa) and supraoptic hypothalamic nuclei (SON). From the anterior SON, OTergic cells extend into the medial amygdala, where a sparse cell population occupies its ventral anterior and posterior divisions. Co-expression of OT and AVP in these nuclei is rare. Moreover, a remarkable OTergic cell group is found near the ventral bed nucleus of the stria terminalis (BST), distributed between the anterodorsal preoptic nucleus and the nucleus of anterior commissure (ADP/AC). This cell group, the rostral edge of the Pa and the periventricular hypothalamus display frequent OT + AVP double labelling, with a general dominance of OT over AVP immunoreactivity. Fibres with similar immunoreactivity profile innervate the accumbens shell and core, central amygdala and portions of the intervening BST. These data, together with data in the literature on rats, suggest that the projections of ADP/AC nonapeptidergic cells onto these brain centres could promote pup-motivated behaviours and inhibit pup avoidance during motherhood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

10N:

Dorsal motor nucleus of the vagus

12N:

Hypoglossal nucleus

3V:

Third ventricle

4n:

Trochlear nerve or its root

4V:

4th ventricle

A1:

A1 noradrenaline cells

AC:

Anterior commissural nucleus

AC:

Anterior commissural nucleus

aca:

Anterior commissure, anterior part

Acb:

Accumbens nucleus

AcbC:

Accumbens nucleus, core

AcbSh:

Accumbens nucleus, shell

ACo:

Anterior cortical amygdaloid nucleus

acp:

Anterior commissure, posterior part

AD:

Anterodorsal thalamic nucleus

ADP:

Anterodorsal preoptic nucleus

AHA:

Anterior hypothalamic area, anterior part

AHP:

Anterior hypothalamic area, posterior part

AIP:

Agranular insular cortex, posterior part

AM:

Anteromedial thalamic nucleus

Amb:

Ambiguus nucleus

AN:

Accessory nuclei

AP:

Area postrema

APir:

Amygdalopiriform transition area

Aq:

Aqueduct (Sylvius)

Arc:

Arcuate hypothalamic nucleus

AStr:

Amygdalostriatal transition area

AV:

Anteroventral thalamic nucleus

AVP:

Arginine vasopressin

AVPe:

Anteroventral periventricular nucleus

AVP-ir:

Arginine vasopressin immunoreactive

AVV:

Anteroventral thalamic nucleus, ventral part

BAC:

Bed nucleus of the anterior commissure

BAOT:

Bed nucleus of the accessory olfactory

Bar:

Barrington’s nucleus

BLA:

Basolateral amygdaloid nucleus, anterior

BLV:

Basolateral amygdaloid nucleus, ventral

BMA:

Basomedial amygdaloid nucleus, anterior

BST:

Bed nucleus of the stria terminalis

BSTA:

Bed nucleus of the stria terminalis, anterior part

BSTIA:

Bed nucleus of the stria terminalis, intraamygdaloid division

BSTLD:

Bed nucleus of the stria terminalis, lateral division, dorsal part

BSTLP:

Bed nucleus of the stria terminalis, lateral division, posterior part

BSTLV:

Bed nucleus of the stria terminalis, lateral division, ventral part

BSTMA:

Bed nucleus of the stria terminalis, medial division, anterior part

BSTMP:

Bed nucleus of the stria terminalis, medial division, posterior part

BSTMPI:

Bed nucleus of the stria terminalis, medial division, posterointermediate part

BSTMPL:

Bed nucleus of the stria terminalis, medial division, posterolateral part

BSTMPM:

Bed nucleus of the stria terminalis, medial division, posteromedial part

BSTMV:

Bed nucleus of the stria terminalis, medial division, ventral part

BSTS:

Bed nucleus of the stria terminalis, supracapsular part

cc:

Corpus callosum

CC:

Central canal

Ce:

Central amygdaloid nucleus

CeC:

Central amygdaloid nucleus, capsular part

CeL:

Central amygdaloid nucleus, lateral division

CeM:

Central amygdaloid nucleus, medial division

CeMAD:

Central amygdaloid nucleus, medial division, anterodorsal part

CeMAV:

Central amygdaloid nucleus, medial division, anteroventral part

CGPn:

Central grey of the pons

Cl:

Claustrum

CL:

Centrolateral thalamic nucleus

CM:

Central medial thalamic nucleus

cp:

Cerebral peduncle, basal part

CPu:

Caudate putamen (striatum)

cst:

Commissural stria terminalis

Cu:

Cuneate nucleus

CxA:

Cortex–amygdala transition zone

D3V:

Dorsal third ventricle

DEn:

Dorsal endopiriform nucleus

DG:

Dentate gyrus

DLPAG:

Dorsolateral periaqueductal grey

DM:

Dorsomedial hypothalamic nucleus

DMPAG:

Dorsomedial periaqueductal grey

DMTg:

Dorsomedial tegmental nucleus

DP:

Dorsal peduncular cortex

DpMe:

Deep mesencephalic nucleus

DRC:

Dorsal raphe nucleus, caudal part

DRI:

Dorsal raphe nucleus, interfascicular part

DTg:

Dorsal tegmental nucleus

DTgP:

Dorsal tegmental nucleus, pericentral part

DTM:

Dorsal tuberomammillary nucleus

DTT:

Dorsal tenia tecta

ECu:

External cuneate nucleus

EW:

Edinger–Westphal nucleus

f:

Fornix

F:

Nucleus of the fields of Forel

FG:

Fluorogold

fi:

Fimbria of the hippocampus

fmi:

Forceps minor of the corpus callosum

fr:

Fasciculus retroflexus

GrDG:

Granular layer of the dentate gyrus

Gus:

Gustatory thalamic nucleus

HDB:

Nucleus of the horizontal limb of the diagonal band

I:

Intercalated nuclei of the amygdala

IAD:

Interanterodorsal thalamic nucleus

ic:

Internal capsule

ICj:

Islands of Calleja

ICjM:

Islands of Calleja, major island

ICjvm:

Islands of Calleja, ventromedial island

icp:

Inferior cerebellar peduncle

IG:

Indusium griseum

IL:

Infralimbic cortex

IM:

Intercalated amygdaloid nucleus, main part

In:

Intercalated nucleus of the medulla

IO:

Inferior olive

IOD:

Inferior olive, dorsal nucleus

IPAC:

Interstitial nucleus of the posterior limb of the anterior commissure

IPACL:

Lateral interstitial nucleus of the posterior limb of the anterior commissure

IPACM:

Medial interstitial nucleus of the posterior limb of the anterior commissure

IRt:

Intermediate reticular nucleus

KF:

Kölliker-Fuse nucleus

La:

Lateral amygdaloid nucleus

LA:

Lateroanterior hypothalamic nucleus

LaDL:

Lateral amygdaloid nucleus, dorsolateral part

LaVL:

Lateral amygdaloid nucleus, ventrolateral part

LaVM:

Lateral amygdaloid nucleus, ventromedial part

LC:

Locus coeruleus

LDTg:

Laterodorsal tegmental nucleus

LDTgV:

Laterodorsal tegmental nucleus, ventral part

LEnt:

Lateral entorhinal cortex

LGP:

Lateral globus pallidus

LH:

Lateral hypothalamic area

LHb:

Lateral habenular nucleus

lo:

Lateral olfactory tract

LPBE:

Lateral parabrachial nucleus, external part

LPBS:

Lateral parabrachial nucleus, superior part

LPBV:

Lateral parabrachial nucleus, ventral part

LPMR:

Lateral posterior thalamic nucleus, mediodorsal part

LPO:

Lateral preoptic area

LRt:

Lateral reticular nucleus

LS:

Lateral septum

LSD:

Lateral septal nucleus, dorsal part

LSI:

Lateral septal nucleus, intermediate part

LSV:

Lateral septal nucleus, ventral part

LV:

Lateral ventricle

maopt:

Medial accessory optic tract

MCLH:

Magnocellular nucleus of the lateral hypothalamus

MCPO:

Magnocellular preoptic nucleus

MD:

Mediodorsal thalamic nucleus

MdD:

Medullary reticular nucleus, dorsal part

MdV:

Medullary reticular nucleus, ventral part

Me:

Medial amygdaloid nucleus

Me5:

Mesencephalic trigeminal nucleus

MeA:

Medial amygdaloid nucleus, anterior part

MeAD:

Medial amygdaloid nucleus, anterior dorsal part

MeAV:

Medial amygdaloid nucleus, anteroventral part

MePD:

Medial amygdaloid nucleus, posterodorsal part

MePV:

Medial amygdaloid nucleus, posteroventral part

mfb:

Medial forebrain bundle

MGP:

Medial globus pallidus (entopeduncular nucleus)

MHb:

Medial habenular nucleus

ml:

Medial lemniscus

mlf:

Medial longitudinal fasciculus

MnPO:

Median preoptic nucleus

MPA:

Medial preoptic area

MPB:

Medial parabrachial nucleus

MPO:

Medial preoptic nucleus

MPOL:

Medial preoptic nucleus, lateral part

MPOM:

Medial preoptic nucleus, medial part

MS:

Medial septal nucleus

mt:

Mammillothalamic tract

mtg:

Mammillotegmental tract

MTu:

Medial tuberal nucleus

MVe:

Medial vestibular nucleus

mvStP:

Medioventral striato-pallidum

NADPHd:

Nicotinamide adenine dinucleotide phosphate diaphorase

ns:

Nigrostriatal bundle

O:

Nucleus O

opt:

Optic tract

OT:

Oxytocin

OT-ir:

Oxytocin-like immunoreactive (referring to immunostaining using antibodies raised against oxytocin or against its specific neurophysin)

OTR:

Oxytocin receptor

PaAP:

Paraventricular hypothalamic nucleus, anterior parvicellular

PAG:

Periaqueductal grey

PaL:

Paraventricular hypothalamic nucleus, lateral part

PaM:

Paraventricular hypothalamic nucleus, medial part

PaPo:

Paraventricular hypothalamic nucleus, posterior part

PaV:

Paraventricular hypothalamic nucleus, ventral part

PB:

Phosphate buffer

PBS:

Phosphate-buffered saline

PC:

Paracentral thalamic nucleus

Pc:

Posterior commissure

PCom:

Nucleus of the posterior commissure

Pe:

Periventricular hypothalamic nucleus

PeF:

Perifornical nucleus

PF:

Parafascicular thalamic nucleus

PH:

Posterior hypothalamic area

Pir:

Piriform cortex

PLCo:

Posterolateral cortical amygdaloid nucleus

PMCo:

Posteromedial cortical amygdaloid nucleus

PMD:

Premammillary nucleus, dorsal part

PMn:

Paramedian reticular nucleus

PMnR:

Paramedian raphe nucleus

PMV:

Premammillary nucleus, ventral part

PnC:

Pontine reticular nucleus, caudal part

PO:

Periolivary region

Pr5:

Principal sensory trigeminal nucleus

PRh:

Perirhinal cortex

PrL:

Prelimbic cortex

PSTh:

Parasubthalamic nucleus

PT:

Paratenial thalamic nucleus

PV:

Paraventricular thalamic nucleus

PVA:

Paraventricular thalamic nucleus, anterior part

Py:

Pyramidal cell layer of the hippocampus

Rad:

Stratum radiatum of the hippocampus

Re:

Reuniens thalamic nucleus

RI:

Rostral interstitial nucleus of the medial longitudinal fasciculus

RLi:

Rostral linear nucleus of the raphe

RMg:

Raphe magnus nucleus

RPF:

Retroparafascicular nucleus

RRF:

Retrorubral field

rs:

Rubrospinal tract

Rt:

Reticular thalamic nucleus

SCh:

Suprachiasmatic nucleus

SCO:

Subcommissural organ

scp:

Superior cerebellar peduncle

SFi:

Septofimbrial nucleus

SFO:

Subfornical organ

Shi:

Septohippocampal nucleus

SHy:

Septohypothalamic nucleus

SI:

Substantia innominata

SL:

Semilunar nucleus

SLu:

Stratum lucidum, hippocampus

SM:

Nucleus of the stria medullaris

sm:

Stria medullaris of the thalamus

SN:

Substantia nigra

Sol:

Nucleus of the solitary tract

sol:

Solitary tract

SON:

Supraoptic nucleus

SOR:

Supraoptic nucleus, retrochiasmatic part

sp5:

Spinal trigeminal tract

st:

Stria terminalis

StA:

Striatal part of the preoptic area

Su3:

Supraoculomotor periaqueductal grey

Su5:

Supratrigeminal nucleus

SubB:

Subbrachial nucleus

SubC:

Subcoeruleus nucleus

TBS:

TRIS-buffered saline

TC:

Tuber cinereum area

Te:

Terete hypothalamic nucleus

Tu:

Olfactory tubercle

Unc:

Uncinate fasciculus

V1aR:

Arginine vasopressin receptor type 1a

V1bR:

Arginine vasopressin receptor type 1b

VA:

Ventral anterior thalamic nucleus

VDB:

Nucleus of the vertical limb of the diagonal band

VEn:

Ventral endopiriform nucleus

VLPO:

Ventrolateral preoptic nucleus

VM:

Ventromedial thalamic nucleus

VMH:

Ventromedial hypothalamic nucleus

VMHC:

Ventromedial hypothalamic nucleus, central part

VMHDM:

Ventromedial hypothalamic nucleus, dorsomedial part

VMHVL:

Ventromedial hypothalamic nucleus, ventrolateral part

VMPO:

Ventromedial preoptic nucleus

VOLT:

Vascular organ of the lamina terminalis

VP:

Ventral pallidum

vsc:

Ventral spinocerebellar tract

VTA:

Ventral tegmental area

VTg:

Ventral tegmental nucleus

VTM:

Ventral tuberomammillary nucleus

VTT:

Ventral tenia tecta

Xi:

Xiphoid thalamic nucleus

ZI:

Zona incerta

References

  • Banczerowski P et al (2003) Lesion of the amygdala on the right and left side suppresses testosterone secretion but only left-sided intervention decreases serum luteinizing hormone level. J Endocrinol Invest 26(5):429–434

    Article  CAS  PubMed  Google Scholar 

  • Beery AK, Lacey EA, Francis DD (2008) Oxytocin and vasopressin receptor distributions in a solitary and a social species of tuco-tuco (Ctenomys haigi and Ctenomys sociabilis). J Comp Neurol 507(6):1847–1859

    Article  CAS  PubMed  Google Scholar 

  • Belenky M et al (1992) Ultrastructural immunolocalization of rat oxytocin-neurophysin in transgenic mice expressing the rat oxytocin gene. Brain Res 583(1–2):279–286

    Article  CAS  PubMed  Google Scholar 

  • Ben-Barak Y et al (1985) Neurophysin in the hypothalamo-neurohypophysial system. I. Production and characterization of monoclonal antibodies. J Neurosci 5(1):81–97

    CAS  PubMed  Google Scholar 

  • Bielsky IF et al (2005) The V1a vasopressin receptor is necessary and sufficient for normal social recognition: a gene replacement study. Neuron 47(4):503–513

    Article  CAS  PubMed  Google Scholar 

  • Bosch OJ (2011) Maternal nurturing is dependent on her innate anxiety: the behavioral roles of brain oxytocin and vasopressin. Horm Behav 59(2):202–212

    Article  CAS  PubMed  Google Scholar 

  • Breiter HC et al (1996) Response and habituation of the human amygdala during visual processing of facial expression. Neuron 17(5):875–887

    Article  CAS  PubMed  Google Scholar 

  • Buijs RM (1978) Intra- and extrahypothalamic vasopressin and oxytocin pathways in the rat. Pathways to the limbic system, medulla oblongata and spinal cord. Cell Tissue Res 192(3):423–435

    Article  CAS  PubMed  Google Scholar 

  • Buijs RM et al (1978) Intra- and extrahypothalamic vasopressin and oxytocin pathways in the rat. Cell Tissue Res 186:423–433

    Article  CAS  PubMed  Google Scholar 

  • Butovsky E et al (2006) Chronic exposure to ∆9-tetrahydrocannabinol downregulates oxytocin and oxytocin-associated neurophysin in specific brain areas. Mol Cell Neurosci 31(4):795–804

    Article  CAS  PubMed  Google Scholar 

  • Bychowski ME, Mena JD, Auger CJ (2013) Vasopressin infusion into the lateral septum of adult male rats rescues progesterone-induced impairment in social recognition. Neuroscience 246:52–58

    Article  CAS  PubMed  Google Scholar 

  • Cádiz-Moretti B, Martínez-García F, Lanuza E (2013) Neural substrate to associate odorants and pheromones: convergence of projections from the main and accessory olfactory bulbs in mice. In: East ML, Dehnhard M (eds) Chemical signals in vertebrates 12. Springer, New York, pp 269–275. doi:10.1007/978-1-4614-5927-9

    Google Scholar 

  • Caffé AR et al (1989) Vasopressin and oxytocin systems in the brain and upper spinal cord of Macaca fascicularis. J Comp Neurol 287(3):302–325

    Article  PubMed  Google Scholar 

  • Caldwell H, Young 3rd WS (2006) Oxytocin and vasopressin: genetics and behavioral implications. Handbook of neurochemistry and molecular neurobiology, pp 573–607. doi:10.1007/978-0-387-30381-9_25

  • Caldwell HK, Wersinger SR, Young WS 3rd (2008) The role of the vasopressin 1b receptor in aggression and other social behaviours. Prog Brain Res 170:65–72

    Article  CAS  PubMed  Google Scholar 

  • Campbell P, Ophir AG, Phelps SM (2009) Central vasopressin and oxytocin receptor distributions in two species of singing mice. J Comp Neurol 516(4):321–333

    Article  PubMed  Google Scholar 

  • Carter CS et al (2008) Oxytocin, vasopressin and sociality. Prog Brain Res 170:331–336

    Article  CAS  PubMed  Google Scholar 

  • Castel M, Morris JF (1988) The neurophysin-containing innervation of the forebrain of the mouse. Neuroscience 24(3):937–966

    Article  CAS  PubMed  Google Scholar 

  • Caughey SD et al (2011) Changes in the intensity of maternal aggression and central oxytocin and vasopressin V1a receptors across the peripartum period in the rat. J Neuroendocrinol 23(11):1113–1124

    Article  CAS  PubMed  Google Scholar 

  • Chamero P et al (2007) Identification of protein pheromones that promote aggressive behaviour. Nature 450(7171):899–902

    Article  CAS  PubMed  Google Scholar 

  • Choleris E, Pfaff DW, Kavaliers M (2013) Oxytocin, vasopressin and related peptides in the regulation of behavior. In: Oxytocin, vasopressin and related peptides in the regulation of behavior. pp 379–381. http://ebooks.cambridge.org/ref/id/CBO9781139017855

  • Condés-Lara M et al (2007) Branched oxytocinergic innervations from the paraventricular hypothalamic nuclei to superficial layers in the spinal cord. Brain Res 1160(1):20–29

    Article  PubMed  CAS  Google Scholar 

  • DeVries GJ et al (1985) The vasopressinergic innervation of the brain in normal and castrated rats. J Comp Neurol 233(2):236–254

    Article  CAS  PubMed  Google Scholar 

  • Dölen G et al (2013) Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin. Nature 501(7466):179–84. http://www.ncbi.nlm.nih.gov/pubmed/24025838

  • Donaldson ZR, Young LJ (2008) Oxytocin, vasopressin, and the neurogenetics of sociality. Science 322(5903):900–904

    Article  CAS  PubMed  Google Scholar 

  • Dong HW, Swanson LW (2006) Projections from bed nuclei of the stria terminalis, dorsomedial nucleus: implications for cerebral hemisphere integration of neuroendocrine, autonomic, and drinking responses. J Comp Neurol 494(1):75–107

    Article  PubMed  PubMed Central  Google Scholar 

  • Dubois-Dauphin M, Barberis C, De Bilbao F (1996) Vasopressin receptors in the mouse (Mus musculus) brain: sex-related expression in the medial preoptic area and hypothalamus. Brain Res 743(1–2):32–39

    Article  CAS  PubMed  Google Scholar 

  • Eaton JL et al (2012) Organizational effects of oxytocin on serotonin innervation. Dev Psychobiol 54(1):92–97

    Article  CAS  PubMed  Google Scholar 

  • Egashira N et al (2007) Impaired social interaction and reduced anxiety-related behavior in vasopressin V1a receptor knockout mice. Behav Brain Res 178(1):123–127

    Article  CAS  PubMed  Google Scholar 

  • Evans DW et al. (2014) Social cognition and brain morphology: implications for developmental brain dysfunction. Brain Imaging Behav

  • Feldman R et al (2010) Natural variations in maternal and paternal care are associated with systematic changes in oxytocin following parent-infant contact. Psychoneuroendocrinology 35(8):1133–1141. doi:10.1016/j.psyneuen.2010.01.013

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Moreno F et al (2010) A neuronal migratory pathway crossing from diencephalon to telencephalon populates amygdala nuclei. Nat Neurosci 13(6):680–689

    Article  CAS  PubMed  Google Scholar 

  • Glasgow E et al (1999) Single cell reverse transcription-polymerase chain reaction analysis of rat supraoptic magnocellular neurons: neuropeptide phenotypes and high voltage-gated calcium channel subtypes. Endocrinology 140(11):5391–5401

    Article  CAS  PubMed  Google Scholar 

  • Gregory R et al (2015) Oxytocin increases VTA activation to infant and sexual stimuli in nulliparous and postpartum women. Horm Behav 69:82–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammock EAD, Levitt P (2013) Oxytocin receptor ligand binding in embryonic tissue and postnatal brain development of the C57BL/6J mouse. Front Behav Neurosci 7:195. doi:10.3389/fnbeh.2013.00195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hatton GI, Cobbett P, Salm AK (1985) Extranuclear axon collaterals of paraventricular neurons in the rat hypothalamus: intracellular staining, immunocytochemistry and electrophysiology. Brain Res Bull 14(2):123–132

    Article  CAS  PubMed  Google Scholar 

  • Hawthorn J, Ang VT, Jenkins JS (1985) Effects of lesions in the hypothalamic paraventricular, supraoptic and suprachiasmatic nuclei on vasopressin and oxytocin in rat brain and spinal cord. Brain Res 346(1):51–57

    Article  CAS  PubMed  Google Scholar 

  • Hermes MLHJ et al (1988) Oxytocinergic innervation of the brain of the garden dormouse (Eliomys quercinus L.). J Comp Neurol 273:252–262

    Article  CAS  PubMed  Google Scholar 

  • Honda K, Higuchi T (2010a) Effects of unilateral electrolytic lesion of the dorsomedial nucleus of the hypothalamus on milk-ejection reflex in the rat. J Reprod Dev 56(1):98–102

    Article  PubMed  Google Scholar 

  • Honda K, Higuchi T (2010b) Electrical activities of neurones in the dorsomedial hypothalamic nucleus projecting to the supraoptic nucleus during milk-ejection reflex in the rat. J Reprod Dev 56(3):336–340

    Article  PubMed  Google Scholar 

  • Hou-Yu A et al (1986) Comparative distribution of vasopressin and oxytocin neurons in the rat brain using a double-label procedure. Neuroendocrinology 44(2):235–246

    Article  CAS  PubMed  Google Scholar 

  • Huber D, Veinante P, Stoop R (2005) Vasopressin and oxytocin excite distinct neuronal populations in the central amygdala. Science 308(5719):245–248

    Article  CAS  PubMed  Google Scholar 

  • Insel TR, Harbaugh CR (1989) Lesions of the hypothalamic paraventricular nucleus disrupt the initiation of maternal behavior. Physiol Behav 45(5):1033–1041

    Article  CAS  PubMed  Google Scholar 

  • Insel TR et al (1993) Gonadal steroids have paradoxical effects on brain oxytocin receptors. J Neuroendocrinol 5(6):619–628

    Article  CAS  PubMed  Google Scholar 

  • Isogai Y et al (2011) Molecular organization of vomeronasal chemoreception. Nature 478(7368):241–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin D et al (2007) CD38 is critical for social behaviour by regulating oxytocin secretion. Nature 446(7131):41–45

    Article  CAS  PubMed  Google Scholar 

  • Jirikowski GF, Ramalho-Ortigao FJ, Caldwell JD (1991) Transitory coexistence of oxytocin and vasopressin in the hypothalamo neurohypophysial system of parturient rats. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme 23(10):476–480

  • Kang N, Baum MJ, Cherry JA (2009) A direct main olfactory bulb projection to the “vomeronasal” amygdala in female mice selectively responds to volatile pheromones from males. Eur J Neurosci 29(3):624–634

    Article  PubMed  PubMed Central  Google Scholar 

  • Kiyama H, Emson PC (1990) Evidence for the co-expression of oxytocin and vasopressin messenger ribonucleic acids in magnocellular neurosecretory cells: simultaneous demonstration of two neurohypophysin messenger ribonucleic acids by hybridization histochemistry. J Neuroendocrinol 2(3):257–259

    Article  CAS  PubMed  Google Scholar 

  • Knobloch HS et al (2012) Evoked axonal oxytocin release in the central amygdala attenuates fear response. Neuron 73(3):553–566. doi:10.1016/j.neuron.2011.11.030

    Article  CAS  PubMed  Google Scholar 

  • Krisch B (1976) Immunohistochemical and electron microscopic study of the rat hypothalamic nuclei and cell clusters under various experimental conditions. Possible sites of hormone release. Cell Tissue Res 174(1):109–127

    Article  CAS  PubMed  Google Scholar 

  • Landgraf R, Neumann ID (2004) Vasopressin and oxytocin release within the brain: a dynamic concept of multiple and variable modes of neuropeptide communication. Front Neuroendocrinol 25(3–4):150–176

    Article  CAS  PubMed  Google Scholar 

  • Lim MM, Murphy AZ, Young LJ (2004) Ventral striatopallidal oxytocin and vasopressin v1a receptors in the monogamous prairie vole (Microtus ochrogaster). J Comp Neurol 468(4):555–570

    Article  CAS  PubMed  Google Scholar 

  • Liu H et al (1994) Synaptic relationship between substance P and the substance P receptor: light and electron microscopic characterization of the mismatch between neuropeptides and their receptors. Proc Natl Acad Sci USA 91(3):1009–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ludwig M, Leng G (2006) Dendritic peptide release and peptide-dependent behaviours. Nat Rev Neurosci 7(2):126–136

    Article  CAS  PubMed  Google Scholar 

  • Lukas M et al (2013) Oxytocin mediates rodent social memory within the lateral septum and the medial amygdala depending on the relevance of the social stimulus: male juvenile versus female adult conspecifics. Psychoneuroendocrinology 38(6):916–926

    Article  CAS  PubMed  Google Scholar 

  • Manning M et al (2012) Oxytocin and vasopressin agonists and antagonists as research tools and potential therapeutics. J Neuroendocrinol 24(4):609–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markowitsch HJ (1998) Differential contribution of right and left amygdala to affective information processing. Behav Neurol 11(4):233–244. http://www.ncbi.nlm.nih.gov/pubmed/11568425

  • Martínez-García F et al (2012) Chapter 6—piriform cortex and amygdala. In: GP Charles Watson, George Paxinos, Luis Puelles, Charles Watson, L Puelles (eds) The mouse nervous system, pp 140–172. Academic Press, San Diego. http://www.sciencedirect.com/science/article/pii/B9780123694973100068

  • Mottolese R et al (2014) Switching brain serotonin with oxytocin. Proceedings of the National Academy of Sciences of the United States of America, vol 111, issue 23, pp 8637–42. http://www.ncbi.nlm.nih.gov/pubmed/24912179

  • Melis MR et al (2007) Oxytocin injected into the ventral tegmental area induces penile erection and increases extracellular dopamine in the nucleus accumbens and paraventricular nucleus of the hypothalamus of male rats. Eur J Neurosci 26(4):1026–1035

    Article  PubMed  Google Scholar 

  • Merighi A et al (1989) Ultrastructural localization of neuropeptides and GABA in rat dorsal horn: a comparison of different immunogold labeling techniques. J Histochem Cytochem 37(4):529–540

    Article  CAS  PubMed  Google Scholar 

  • Meyer-Lindenberg A et al (2011) Oxytocin and vasopressin in the human brain: social neuropeptides for translational medicine. Nat Rev Neurosci 12(9):524–538

    Article  CAS  PubMed  Google Scholar 

  • Mezey E, Kiss JZ (1991) Coexpression of vasopressin and oxytocin in hypothalamic supraoptic neurons of lactating rats. Endocrinology 129(4):1814–1820

    Article  CAS  PubMed  Google Scholar 

  • Mohr E et al (1988) Expression of the vasopressin and oxytocin genes in rats occurs in mutually exclusive sets of hypothalamic neurons. FEBS Lett 242(1):144–148

    Article  CAS  PubMed  Google Scholar 

  • Muchlinski AE, Johnson DJ, Anderson DG (1988) Electron microscope study of the association between hypothalamic blood vessels and oxytocin-like immunoreactive neurons. Brain Res Bull 20(2):267–271

    Article  CAS  PubMed  Google Scholar 

  • Mullis K, Kay K, Williams DL (2013) Oxytocin action in the ventral tegmental area affects sucrose intake. Brain Res 1513:85–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nephew BC, Bridges RS (2008) Central actions of arginine vasopressin and a V1a receptor antagonist on maternal aggression, maternal behavior, and grooming in lactating rats. Pharmacol Biochem Behav 91(1):77–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neumann ID, Landgraf R (2012) Balance of brain oxytocin and vasopressin: Implications for anxiety, depression, and social behaviors. Trends Neurosci 35(11):649–659. http://dx.doi.org/10.1016/j.tins.2012.08.004

  • Newman SW (1999) The medial extended amygdala in male reproductive behavior. A node in the mammalian social behavior network. Ann N Y Acad Sci 877:242–257

    Article  CAS  PubMed  Google Scholar 

  • Ni RJ et al (2014) Distribution of vasopressin, oxytocin and vasoactive intestinal polypeptide in the hypothalamus and extrahypothalamic regions of tree shrews. Neuroscience 265:124–136

    Article  CAS  PubMed  Google Scholar 

  • Nishimori K et al (2008) New aspects of oxytocin receptor function revealed by knockout mice: sociosexual behaviour and control of energy balance. Prog Brain Res 170:79–90

    Article  CAS  PubMed  Google Scholar 

  • Nodari F et al (2008) Sulfated steroids as natural ligands of mouse pheromone-sensing neurons. J Neurosci 28(25):6407–6418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Numan M, Numan M (1996) A lesion and neuroanatomical tract-tracing analysis of the role of the bed nucleus of the stria terminalis in retrieval behavior and other aspects of maternal responsiveness in rats. Dev Psychobiol 29(1):23–51

    Article  CAS  PubMed  Google Scholar 

  • Numan M, Woodside B (2010) Maternity: neural mechanisms, motivational processes, and physiological adaptations. Behav Neurosci 124(6):715–741

    Article  PubMed  Google Scholar 

  • Numan M et al (1988) Axon-sparing lesions of the preoptic region and substantia innominata disrupt maternal behavior in rats. Behav Neurosci 102(3):381–396

    Article  CAS  PubMed  Google Scholar 

  • Olazábal DE, Young LJ (2006) Oxytocin receptors in the nucleus accumbens facilitate “spontaneous” maternal behavior in adult female prairie voles. Neuroscience 141(2):559–568

    Article  PubMed  CAS  Google Scholar 

  • Olazabal DE et al (2002) MPOA cytotoxic lesions and maternal behavior in the rat: effects of midpubertal lesions on maternal behavior and the role of ovarian hormones in maturation of MPOA control of maternal behavior. Horm Behav 41(2):126–138

    Article  CAS  PubMed  Google Scholar 

  • Olucha-Bordonau FE et al (2014) Amygdala: structure and function. In: Paxinos G (ed) The rat nervous system. Academic Press, London, pp 441–490

    Google Scholar 

  • Otero-Garcia M et al (2014) Extending the socio-sexual brain: arginine-vasopressin immunoreactive circuits in the telencephalon of mice. Brain Struct Funct 219(3):1055–1081

    Article  CAS  PubMed  Google Scholar 

  • Pagani JH et al (2015) Raphe serotonin neuron-specific oxytocin receptor knockout reduces aggression without affecting anxiety-like behavior in male mice only. Genes Brain Behav 14(2):167–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paxinos G, Franklin KBJ (2001) The mouse brain in stereotaxic coordinates. Academic Press, San Diego

    Google Scholar 

  • Pedersen CA (1997) Oxytocin control of maternal behavior. Regulation by sex steroids and offspring stimuli. Ann N Y Acad Sci 807:126–145

    Article  CAS  PubMed  Google Scholar 

  • Pedersen CA et al (1994) Oxytocin activates the postpartum onset of rat maternal behavior in the ventral tegmental and medial preoptic areas. Behav Neurosci 108(6):1163–1171

    Article  CAS  PubMed  Google Scholar 

  • Pobbe RLH et al (2012) Oxytocin receptor knockout mice display deficits in the expression of autism-related behaviors. Horm Behav 61(3):436–444. doi:10.1016/j.yhbeh.2011.10.010

    Article  CAS  PubMed  Google Scholar 

  • Rhodes CH, Morrell JI, Pfaff DW (1981) Immunohistochemical analysis of magnocellular elements in rat hypothalamus: distribution and numbers of cells containing neurophysin, oxytocin, and vasopressin. J Comp Neurol 198(1):45–64

    Article  CAS  PubMed  Google Scholar 

  • Roberts SA et al (2010) Darcin: a male pheromone that stimulates female memory and sexual attraction to an individual male’s odour. BMC Biol 8:75

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rood BD, De Vries GJ (2011) Vasopressin innervation of the mouse (Mus musculus) brain and spinal cord. J Comp Neurol 519(12):2434–2474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rood BD et al (2013) Site of origin of and sex differences in the vasopressin innervation of the mouse (Mus musculus) brain. J Comp Neurol 521(10):2321–2358

    Article  CAS  PubMed  Google Scholar 

  • Rosen GJ et al (2008) Distribution of oxytocin in the brain of a eusocial rodent. Neuroscience 155(3):809–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ross HE et al (2009) Characterization of the oxytocin system regulating affiliative behavior in female prairie voles. Neuroscience 162(4):892–903. doi:10.1016/j.neuroscience.2009.05.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabatier N, Shibuya I, Dayanithi G (2004) Intracellular calcium increase and somatodendritic vasopressin release by vasopressin receptor agonists in the rat supraoptic nucleus: involvement of multiple intracellular transduction signals. J Neuroendocrinol 16(3):221–236

    Article  CAS  PubMed  Google Scholar 

  • Sanchez MA, Dominguez R (1995) Differential-effects of unilateral lesions in the medial amygdala on spontaneous and induced ovulation. Brain Res Bull 38(4):313–317. <Go to ISI>://A1995RV80800002

  • Sarnyai Z, Kovács GL (1994) Role of oxytocin in the neuroadaptation to drugs of abuse. Psychoneuroendocrinology 19(1):85–117

    Article  CAS  PubMed  Google Scholar 

  • Shahrokh DK et al (2010) Oxytocin-dopamine interactions mediate variations in maternal behavior in the rat. Endocrinology 151(5):2276–2286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shipley MT, Adamek GD (1984) The connections of the mouse olfactory bulb: a study using orthograde and retrograde transport of wheat germ agglutinin conjugated to horseradish peroxidase. Brain Res Bull 12:669–688

    Article  CAS  PubMed  Google Scholar 

  • Staes N et al (2014) Oxytocin and vasopressin receptor gene variation as a proximate base for inter- and intraspecific behavioral differences in bonobos and chimpanzees. Plos One 9(11):e113364. doi:10.1371/journal.pone.0113364

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stoop R (2012) Neuromodulation by oxytocin and vasopressin. Neuron 76(1):142–159. doi:10.1016/j.neuron.2012.09.025

    Article  CAS  PubMed  Google Scholar 

  • Succu S et al (2008) Oxytocin induces penile erection when injected into the ventral tegmental area of male rats: role of nitric oxide and cyclic GMP. Eur J Neurosci 28(4):813–821. http://www.ncbi.nlm.nih.gov/pubmed/18671741

  • Swanson LW, Kuypers HG (1980) The paraventricular nucleus of the hypothalamus: cytoarchitectonic subdivisions and organization of projections to the pituitary, dorsal vagal complex, and spinal cord as demonstrated by retrograde fluorescence double-labeling methods. J Comp Neurol 194(3):555–570

    Article  CAS  PubMed  Google Scholar 

  • Takahashi A, Miczek KA (2013) Neurogenetics of aggressive behavior: studies in rodents. Curr Top Behav Neurosci 17:3–44

    Article  Google Scholar 

  • Takano S et al (1992) Lesion and electrophysiological studies on the hypothalamic afferent pathway of the milk ejection reflex in the rat. Neuroscience 50(4):877–883

    Article  CAS  PubMed  Google Scholar 

  • Tang Y et al (2014) Oxytocin activation of neurons in ventral tegmental area and interfascicular nucleus of mouse midbrain. Neuropharmacology 77:277–284

    Article  CAS  PubMed  Google Scholar 

  • Telleria-Diaz A, Grinevich VV, Jirikowski GF (2001) Colocalization of vasopressin and oxytocin in hypothalamic magnocellular neurons in water-deprived rats. Neuropeptides 35(3–4):162–167

    Article  CAS  PubMed  Google Scholar 

  • Tobin V, Leng G, Ludwig M (2012) The involvement of actin, calcium channels and exocytosis proteins in somato-dendritic oxytocin and vasopressin release. Front Physiol 3:261. doi:10.3389/fphys.2012.00261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Toth I, Neumann ID (2013) Animal models of social avoidance and social fear. Cell Tissue Res 354(1):107–118

    Article  PubMed  Google Scholar 

  • Trueta C, De-Miguel FF (2012) Extrasynaptic exocytosis and its mechanisms: a source of molecules mediating volume transmission in the nervous system. Front Physiol 3:319. doi:10.3389/fphys.2012.00319

    PubMed  PubMed Central  Google Scholar 

  • Tsuneoka Y, Maruyama T, Yoshida S, Nishimori K, Kato T, Numan M, Kuroda KO (2013) Functional, anatomical, and neurochemical differentiation of medial preoptic area subregions in relation to maternal behavior in the mouse. J Comp Neurol 521(7):1633–1663

    Article  CAS  PubMed  Google Scholar 

  • Valesky EM et al (2012) Distribution of oxytocin- and vasopressin-immunoreactive neurons in the brain of the eusocial mole rat (Fukomys anselli). Anat Rec 295(3):474–480

    Article  CAS  Google Scholar 

  • Veenema AH, Neumann ID (2008) Central vasopressin and oxytocin release: regulation of complex social behaviours. Prog Brain Res 170:261–276

    Article  CAS  PubMed  Google Scholar 

  • Veinante P, Freund-Mercier MJ (1997) Distribution of oxytocin- and vasopressin-binding sites in the rat extended amygdala: a histoautoradiographic study. J Comp Neurol 383(3):305–325

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Lufkin T (2000) The murine Otp homeobox gene plays an essential role in the specification of neuronal cell lineages in the developing hypothalamus. Dev Biol 227(2):432–449

    Article  CAS  PubMed  Google Scholar 

  • Wang Z et al (1996) Immunoreactivity of central vasopressin and oxytocin pathways in microtine rodents: a quantitative comparative study. J Comp Neurol 366(4):726–737

    Article  CAS  PubMed  Google Scholar 

  • Whitnall MH et al (1985) Neurophysin in the hypothalamo-neurohypophysial system. II. Immunocytochemical studies of the ontogeny of oxytocinergic and vasopressinergic neurons. J Neurosci 5(1):98–109

    CAS  PubMed  Google Scholar 

  • Xi D, Kusano K, Gainer H (1999) Quantitative analysis of oxytocin and vasopressin messenger ribonucleic acids in single magnocellular neurons isolated from supraoptic nucleus of rat hypothalamus. Endocrinology 140(10):4677–4682

    Article  CAS  PubMed  Google Scholar 

  • Xiao M et al (2005) The distribution of neural nitric oxide synthase-positive cerebrospinal fluid-contacting neurons in the third ventricular wall of male rats and coexistence with vasopressin or oxytocin. Brain Res 1038(2):150–162

    Article  CAS  PubMed  Google Scholar 

  • Xu L et al (2010) Oxytocin and vasopressin immunoreactive staining in the brains of Brandt’s voles (Lasiopodomys brandtii) and greater long-tailed hamsters (Tscherskia triton). Neuroscience 169(3):1235–1247. doi:10.1016/j.neuroscience.2010.05.064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J et al (2011) Oxytocin in the periaqueductal gray participates in pain modulation in the rat by influencing endogenous opiate peptides. Peptides 32(6):1255–1261

    Article  CAS  PubMed  Google Scholar 

  • Yayou K-I, Ito S, Yamamoto N (2015) Relationships between postnatal plasma oxytocin concentrations and social behaviors in cattle. Anim Sci J 86(8):806–813

    Article  CAS  PubMed  Google Scholar 

  • Yoshida M et al (2009) Evidence that oxytocin exerts anxiolytic effects via oxytocin receptor expressed in serotonergic neurons in mice. J Neurosci 29(7):2259–2271

    Article  CAS  PubMed  Google Scholar 

  • Young LJ, Wang Z (2004) The neurobiology of pair bonding. Nat Neurosci 7(10):1048–1054

    Article  CAS  PubMed  Google Scholar 

  • Young LJ et al (1999) Increased affiliative response to vasopressin in mice expressing the V1a receptor from a monogamous vole. Nature 400(6746):766–768

    Article  CAS  PubMed  Google Scholar 

  • Zoli M, Agnati LF (1996) Wiring and volume transmission in the central nervous system: the concept of closed and open synapses. Prog Neurobiol 49(4):363–380

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the Spanish Ministry of Science—FEDER (BFU2013-47688-P), the Junta de Comunidades de Castilla-La Mancha/FEDER (PEIC11-0045-4490) and the Universitat Jaume I. This work is part of the doctoral thesis of Marcos Otero-García, granted by the FPU (Formación de Profesorado Universitario) programme of the Spanish Ministry of Education and Science. The authors gratefully acknowledge Dr. Harold Gainer for his generous gift of antibodies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Martínez-García.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otero-García, M., Agustín-Pavón, C., Lanuza, E. et al. Distribution of oxytocin and co-localization with arginine vasopressin in the brain of mice. Brain Struct Funct 221, 3445–3473 (2016). https://doi.org/10.1007/s00429-015-1111-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-015-1111-y

Keywords

Navigation