Skip to main content

Advertisement

Log in

Sensitivity to the photoperiod and potential migratory features of neuroblasts in the adult sheep hypothalamus

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Adult neurogenesis, a process that consists in the generation of new neurons from adult neural stem cells, represents a remarkable illustration of the brain structural plasticity abilities. The hypothalamus, a brain region that plays a key role in the neuroendocrine regulations including reproduction, metabolism or food intake, houses neural stem cells located within a hypothalamic neurogenic niche. In adult sheep, a seasonal mammalian species, previous recent studies have revealed photoperiod-dependent changes in the hypothalamic cell proliferation rate. In addition, doublecortin (DCX), a microtubule-associated protein expressed in immature migrating neurons, is highly present in the vicinity of the hypothalamic neurogenic niche. With the aim to further explore the mechanism underlying adult sheep hypothalamic neurogenesis, we first show that new neuron production is also seasonally regulated since the density of DCX-positive cells changes according to the photoperiodic conditions at various time points of the year. We then demonstrate that cyclin-dependant kinase-5 (Cdk5) and p35, two proteins involved in DCX phosphorylation and known to be critically involved in migration processes, are co-expressed with DCX in young hypothalamic neurons and are capable of in vivo interaction. Finally, to examine the migratory potential of these adult-born neurons, we reveal the rostro-caudal extent of DCX labeling on hypothalamic sagittal planes. DCX-positive cells are found in the most rostral nuclei of the hypothalamus, including the preoptic area many of which co-expressed estrogen receptor-α. Thus, beyond the confirmation of the high level of neuron production during short photoperiod in sheep, our results bring new and compelling elements in support of the existence of a hypothalamic migratory path that is responsive to seasonal stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alvarez-Buylla A, Kirn JR, Nottebohm F (1990) Birth of projection neurons in adult avian brain may be related to perceptual or motor learning. Science 249(4975):1444–1446

    Article  CAS  PubMed  Google Scholar 

  • Alward BA, Mayes WD, Peng K, Stevenson TJ, Balthazart J, Ball GF (2014) Dissociable effects of social context on song and doublecortin immunoreactivity in male canaries. Eur J Neurosci 40(6):2941–2947

    Article  PubMed  PubMed Central  Google Scholar 

  • Baroncini M, Allet C, Leroy D, Beauvillain JC, Francke JP, Prévot V (2007) Morphological evidence for direct interaction between gonadotrophin-releasing hormone neurones and astroglial cells in the human hypothalamus. J Neuroendocrinol 19:691–702

    Article  CAS  PubMed  Google Scholar 

  • Batailler M, Caraty A, Malpaux B, Tillet Y (2004) Neuroanatomical organization of gonadotropin-releasing hormone neurons during the estrus cycle in the ewe. BMC Neurosci 5(1):46

    Article  PubMed  PubMed Central  Google Scholar 

  • Batailler M, Mullier A, Sidibe A, Delagrange P, Prévot V, Jockers R, Migaud M (2011) Neuroanataomical distribution of the orphan GPR50 receptor in adult sheep and rodent brains. J Neuroendocrinol 24(5):798–808

    Article  Google Scholar 

  • Batailler M, Droguerre M, Baroncini M, Fontaine C, Prevot V, Migaud M (2014) DCX-expressing cells in the vicinity of the hypothalamic neurogenic niche: a comparative study between mouse, sheep, and human tissues. J Comp Neurol 522(8):1966–1985

    Article  PubMed  Google Scholar 

  • Bennett L, Yang M, Enikolopov G, Iacovitti L (2009) Circumventricular organs: a novel site of neural stem cells in the adult brain. Mol Cell Neurosci 41(3):337–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett LB, Cai J, Enikolopov G, Iacovitti L (2010) Heterotopically transplanted CVO neural stem cells generate neurons and migrate with SVZ cells in the adult mouse brain. Neurosci Lett 475(1):1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernier PJ, Bedard A, Vinet J, Levesque M, Parent A (2002) Newly generated neurons in the amygdala and adjoining cortex of adult primates. Proc Natl Acad Sci USA 99(17):11464–11469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bloch J, Kaeser M, Sadeghi Y, Rouiller EM, Redmond DE Jr, Brunet JF (2011) Doublecortin-positive cells in the adult primate cerebral cortex and possible role in brain plasticity and development. J Comp Neurol 519(4):775–789

    Article  CAS  PubMed  Google Scholar 

  • Brown JP, Couillard-Despres S, Cooper-Kuhn CM, Winkler J, Aigner L, Kuhn HG (2003) Transient expression of doublecortin during adult neurogenesis. J Comp Neurol 467(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Cai Y, Xiong K, Chu Y, Luo DW, Luo XG, Yuan XY, Struble RG, Clough RW, Spencer DD, Williamson A, Kordower JH, Patrylo PR, Yan XX (2009) Doublecortin expression in adult cat and primate cerebral cortex relates to immature neurons that develop into GABAergic subgroups. Exp Neurol 216(2):342–356

    Article  CAS  PubMed  Google Scholar 

  • Chae T, Kwon YT, Bronson R, Dikkes P, Li E, Tsai LH (1997) Mice lacking p35, a neuronal specific activator of Cdk5, display cortical lamination defects, seizures, and adult lethality. Neuron 18:29–42

    Article  CAS  PubMed  Google Scholar 

  • Chanvallon A, Sagot L, Pottier E, Debus N, François D, Fassier T, Scaramuzzi RJ, Fabre-Nys C (2011) New insights into the influence of breed and time of the year on the response of ewes to the ‘ram effect’. Animal 5(10):1594–1604

    Article  CAS  PubMed  Google Scholar 

  • Couillard-Despres S, Winner B, Schaubeck S, Aigner R, Vroemen M, Weidner N, Bogdahn U, Winkler J, Kuhn HG, Aigner L (2005) Doublecortin expression levels in adult brain reflect neurogenesis. Eur J Neurosci 21(1):1–14

    Article  PubMed  Google Scholar 

  • de Rouvroit CL, Goffinet AM (2001) Neuronal migration. Mech Dev 105:47–56

    Article  Google Scholar 

  • Dehmelt L, Halpain S (2007) Neurite outgrowth: a flick of the wrist. Curr Biol 17(15):R611–R614

    Article  CAS  PubMed  Google Scholar 

  • Fowler CD, Johnson F, Wang Z (2005) Estrogen regulation of cell proliferation and distribution of estrogen receptor-alpha in the brains of adult female prairie and meadow voles. J Comp Neurol 489(2):166–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francis F, Koulakoff A, Boucher D, Chafey P, Schaar B, Vinet MC, Friocourt G, McDonnell N, Reiner O, Kahn A, McConnell SK, Berwald-Netter Y, Denoulet P, Chelly J (1999) Doublecortin is a developmentally regulated, microtubule-associated protein expressed in migrating and differentiating neurons. Neuron 23(2):247–256

    Article  CAS  PubMed  Google Scholar 

  • Friocourt G, Koulakoff A, Chafey P, Boucher D, Fauchereau F, Chelly J, Francis F (2003) Doublecortin functions at the extremities of growing neuronal processes. Cereb Cortex 13(6):620–626

    Article  PubMed  Google Scholar 

  • Goldman SA, Nottebohm F (1983) Neuronal production, migration, and differentiation in a vocal control nucleus of the adult female canary brain. Proc Natl Acad Sci USA 80:2390–2394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graham ME, Ruma-Haynes P, Capes-Davis G, Dunn JM, Tan TC, Valova VA, Robinson PJ, Jeffrey PL (2004) Multisite phosphorylation of doublecortin by cyclin-dependent kinase 5. Biochem J 381:471–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haan N, Goodman T, Najdi-Samiei A, Stratford CM, Rice R, El Agha E, Bellusci S, Hajihosseini MK (2013) Fgf10-expressing tanycytes add new neurons to the appetite/energy-balance regulating centers of the postnatal and adult hypothalamus. J Neurosci 33(14):6170–6180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirasawa M, Ohshima T, Takahashi S, Longenecker G, Honjo Y, Veeranna Pant HC, Mikoshiba K, Brady RO, Kulkarni AB (2004) Perinatal abrogation of Cdk5 expression in brain results in neuronal migration defects. Proc Natl Acad Sci USA 101(16):6249–6254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirota Y, Ohshima T, Kaneko N, Ikeda M, Iwasato T, Kulkarni AB, Mikoshiba K, Okano H, Sawamoto K (2007) Cyclin-Dependent Kinase 5 Is Required for control of neuroblast migration in the postnatal subventricular zone. J Neurosci 27(47):12829–12838

    Article  CAS  PubMed  Google Scholar 

  • Huang L, DeVries GJ, Bittman EL (1998) Photoperiod regulates neuronal bromodeoxyuridine labeling in the brain of a seasonally breeding mammal. J Neurobiol 36(3):410–420

    Article  CAS  PubMed  Google Scholar 

  • Jessberger S, Aigner S, Clemenson GD, Jr Toni N, Lie DC, Karalay Ö, Overall R, Kempermann G, Gage FH (2008) Cdk5 regulates accurate maturation of newborn granule cells in the adult hippocampus. PLoS Biol 6(11):e272

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson AK, Gross PM (1993) Sensory circumventricular organs and brain homeostatic pathways. FASEB J 7(8):678–686

    CAS  PubMed  Google Scholar 

  • Joly JS, Osório J, Alunni A, Auger H, Kano S, Rétaux S (2007) Windows of the brain: towards a developmental biology of circumventricular and other neurohemal organs. Semin Cell Dev Biol 18(4):512–524

    Article  PubMed  Google Scholar 

  • Klempin F, Kronenberg G, Cheung G, Kettenmann H, Kempermann G (2011) Properties of doublecortin-(DCX)-expressing cells in the piriform cortex compared to the neurogenic dentate gyrus of adult mice. PLoS One 6(10):e25760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohler SJ, Williams NI, Stanton GB, Cameron JL, Greenough WT (2011) Maturation time of new granule cells in the dentate gyrus of adult macaque monkeys exceeds six months. Proc Natl Acad Sci USA 108(25):10326–10331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kokoeva MV, Yin H, Flier JS (2005) Neurogenesis in the hypothalamus of adult mice: potential role in energy balance. Science 310(5748):679–683

    Article  CAS  PubMed  Google Scholar 

  • Kokoeva MV, Yin H, Flier JS (2007) Evidence for constitutive neural cell proliferation in the adult murine hypothalamus. J Comp Neurol 505(2):209–220

    Article  PubMed  Google Scholar 

  • Lagace DC, Benavides DR, Kansy JW, Mapelli M, Greengard P, Bibb JA, Eisch AJ (2008) Cdk5 is essential for adult hippocampal neurogenesis. Proc Natl Acad Sci USA 105(47):18567–18571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee DA, Blackshaw S (2012) Functional implications of hypothalamic neurogenesis in the adult mammalian brain. Int J Dev Neurosci 30(8):615–621

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee DA, Bedont JL, Pak T, Wang H, Song J, Miranda-Angulo A, Takiar V, Charubhumi V, Balordi F, Takebayashi H, Aja S, Ford E, Fishell G, Blackshaw S (2012) Tanycytes of the hypothalamic median eminence form a diet-responsive neurogenic niche. Nature Neurosci 15(5):700–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Tang Y, Cai D (2012) IKKbeta/NF-kappaB disrupts adult hypothalamic neural stem cells to mediate a neurodegenerative mechanism of dietary obesity and pre-diabetes. Nature Cell Biol 14(10):999–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McNay DE, Briançon N, Kokoeva MV, Maratos-Flier E, Flier JS (2012) Remodeling of the arcuate nucleus energy-balance circuit is inhibited in obese mice. J Clin Invest 122(1):142–152

    Article  CAS  PubMed  Google Scholar 

  • Migaud M, Batailler M, Segura S, Duittoz A, Franceschini I, Pillon D (2010) Emerging new sites for adult neurogenesis in the mammalian brain: a comparative study between the hypothalamus and the classical neurogenic zones. Eur J Neurosci 32(12):2042–2052

    Article  PubMed  Google Scholar 

  • Migaud M, Batailler M, Pillon D, Franceschini I, Malpaux B (2011) Seasonal changes in cell proliferation in the adult sheep brain and pars tuberalis. J Biol Rhythms 26(6):486–496

    Article  PubMed  Google Scholar 

  • Migaud M, Butruille L, Batailler M (2015) Seasonal regulation of structural plasticity and neurogenesis in the adult mammalian brain: focus on the sheep hypothalamus. Front Neuroendocrinol 37:146–157

    Article  PubMed  Google Scholar 

  • Ming GL, Song H (2011) Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70(4):687–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohr MA, Sisk CL (2013) Pubertally born neurons and glia are functionally integrated into limbic and hypothalamic circuits of the male Syrian hamster. Proc Natl Acad Sci USA 110(12):4792–4797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nacher J, Crespo C, McEwen BS (2001) Doublecortin expression in the adult rat telencephalon. Eur J Neurosci 14(4):629–644

    Article  CAS  PubMed  Google Scholar 

  • Ohshima T, Ward JM, Huh CG, Longenecker G, Veeranna Pant HC, Brady RO, Martin LJ, Kulkarni AB (1996) Targeted disruption of the cyclin-dependent kinase 5 gene results in abnormal corticogenesis, neuronal pathology and perinatal death. Proc Natl Acad Sci USA 93(20):11173–11178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pekcec A, Löscher W, Potschka H (2006) Neurogenesis in the adult rat piriform cortex. NeuroReport 17:571–574

    Article  PubMed  Google Scholar 

  • Pencea V, Bingaman KD, Wiegand SJ, Luskin MB (2001) Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. J Neurosci 21:6706–6717

    CAS  PubMed  Google Scholar 

  • Pérez-Martín M, Cifuentes M, Grondona JM, López-Avalos MD, Gómez-Pinedo U, García-Verdugo JM, Fernández-Llebrez P (2010) IGF-I stimulates neurogenesis in the hypothalamus of adult rats. Eur J Neurosci 31:1533–1548

    PubMed  Google Scholar 

  • Pierce AA, Xu AW (2010) De novo neurogenesis in adult hypothalamus as a compensatory mechanism to regulate energy balance. J Neurosci 30(2):723–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao MS, Shetty AK (2004) Efficacy of doublecortin as a marker to analyse the absolute number and dendritic growth of newly generated neurons in the adult dentate gyrus. Eur J Neurosci 19(2):234–246

    Article  PubMed  Google Scholar 

  • Robins SC, Stewart I, McNay DE, Taylor V, Giachino C, Goetz M, Ninkovic J, Briancon N, Maratos-Flier E, Flier JS, Kokoeva MV, Placzek M (2013) α-Tanycytes of the adult hypothalamic third ventricle include distinct populations of FGF-responsive neural progenitors. Nat Commun 4:2049

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez EM, Blázquez JL, Pastor FE, Peláez B, Peña P, Peruzzo B, Amat P (2005) Hypothalamic tanycytes: a key component of brain-endocrine interaction. Int Rev Cytol 247:89–164

    Article  PubMed  Google Scholar 

  • Saaltink DJ, Håvik B, Verissimo CS, Lucassen PJ, Vreugdenhil E (2012) Doublecortin and doublecortin-like are expressed in overlapping and non-overlapping neuronal cell population: implications for neurogenesis. J Comp Neurol 520(13):2805–2823

    Article  PubMed  Google Scholar 

  • Shapiro LA, Ng KL, Kinyamu R, Whitaker-Azmitia P, Geisert EE, Blurton-Jones M, Zhou QY, Ribak CE (2007) Origin, migration and fate of newly generated neurons in the adult rodent piriform cortex. Brain Struct Funct 212(2):133–148

    Article  PubMed  Google Scholar 

  • Shapiro LA, Ng K, Zhou QY, Ribak CE (2008) Subventricular zone-derived, newly generated neurons populate several olfactory and limbic forebrain regions. Epilepsy Behav 14(Suppl 1):74–80

    PubMed  PubMed Central  Google Scholar 

  • Tanaka T, Veeranna Ohshima T, Rajan P, Amin ND, Cho A, Sreenath T, Pant HC, Brady RO, Kulkarni AB (2001) Neuronal cyclin-dependent kinase 5 activity is critical for survival. J Neurosci 21(2):550–558

    CAS  PubMed  Google Scholar 

  • Tanaka T, Serneo FF, Higgins C, Gambello MJ, Wynshaw-Boris A, Gleeson JG (2004) Lis1 and doublecortin function with dynein to mediate coupling of the nucleus to the centrosome in neuronal migration. J Cell Biol 165:709–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang D, Yeung J, Lee K-Y, Matsushita M, Matsui H, Tomizawa K, Hatase O, Wang JH (1995) An isoform of the neuronal cyclin-dependent kinase 5 (Cdk5) activator. J Biol Chem 270:26897–26903

    Article  CAS  PubMed  Google Scholar 

  • Tsai LH, Delalle I, Caviness VS Jr, Chae T, Harlow E (1994) p35 is a neural-specific regulatory subunit of cyclin-dependent kinase 5. Nature 371(6496):419–423

    Article  CAS  PubMed  Google Scholar 

  • Verwer RW, Sluiter AA, Balesar RA, Baayen JC, Noske DP, Dirven CM, Wouda J, van Dam AM, Lucassen PJ, Swaab DF (2007) Mature astrocytes in the adult human neocortex express the early neuronal marker doublecortin. Brain 130(Pt 12):3321–3335

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Tamamaki N, Noda T, Kimura K, Itokazu Y, Matsumoto N, Dezawa M, Ide C (2005) Neurogenesis in the ependymal layer of the adult rat 3rd ventricle. Exp Neurol 192(2):251–264

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Joëlle Dupont for her help with Western blotting experiments and the experimental unit PAO No. 1297 (EU0028; INRA Val de Loire) for animal care. This work was funded by the French National Research Agency (Agence Nationale pour la Recherche: ANR-09-JCJC-0049-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martine Migaud.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

429_2015_1101_MOESM1_ESM.pdf

Supplemental Fig. 1: Kinetic of adult neurogenesis in the adult sheep hypothalamus depending on the rostro-caudal levels. Densities of DCX-positive cells at various time points of the year, i.e., in September and January, in May and July, corresponding to short and long photoperiod exposure, respectively. Results are presented as median and interquartile ranges from the more rostral (level 1) to the more caudal level (level 5) of the sections in the AN (A) and the VMH (B). *P < 0.05, **P < 0.01, ***P < 0.001. Supplemental Fig. 2: Seasonal and region-specific quantification of Cdk5-positive cells. Number of Cdk5-positive cells counted in July (yellow bars) and September (blue bars) in the AN (left-side bars) and the VMH (right-side bars). **P < 0.01, ***P < 0.001. Supplemental Fig. 3: Percentages of cells co-expressing DCX and Cdk5 in function of season. Percentage of Cdk5-positive cells also expressing DCX in the AN (A) and the VMH (B), in July (yellow bars) and September (blue bars). Percentage of DCX-positive cells also expressing Cdk5 in the AN (C) and the VMH (D), in July (yellow bars) and September (blue bars). *P < 0.05 (PDF 1130 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batailler, M., Derouet, L., Butruille, L. et al. Sensitivity to the photoperiod and potential migratory features of neuroblasts in the adult sheep hypothalamus. Brain Struct Funct 221, 3301–3314 (2016). https://doi.org/10.1007/s00429-015-1101-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-015-1101-0

Keywords

Navigation