Skip to main content

Advertisement

Log in

The origins of thalamic inputs to grasp zones in frontal cortex of macaque monkeys

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The hand representation in primary motor cortex (M1) is instrumental to manual dexterity in primates. In Old World monkeys, rostral and caudal aspects of the hand representation are located in the precentral gyrus and the anterior bank of the central sulcus, respectively. We previously reported the organization of the cortico-cortical connections of the grasp zone in rostral M1. Here we describe the organization of thalamocortical connections that were labeled from the same tracer injections. Thalamocortical connections of a grasp zone in ventral premotor cortex (PMv) and the M1 orofacial representation are included for direct comparison. The M1 grasp zone was primarily connected with ventral lateral divisions of motor thalamus. The largest proportion of inputs originated in the posterior division (VLp) followed by the medial and the anterior divisions. Thalamic inputs to the M1 grasp zone originated in more lateral aspects of VLp as compared to the origins of thalamic inputs to the M1 orofacial representation. Inputs to M1 from thalamic divisions connected with cerebellum constituted three fold the density of inputs from divisions connected with basal ganglia, whereas the ratio of inputs was more balanced for the grasp zone in PMv. Privileged access of the cerebellothalamic pathway to the grasp zone in rostral M1 is consistent with the connection patterns previously reported for the precentral gyrus. Thus, cerebellar nuclei are likely more involved than basal ganglia nuclei with the contributions of rostral M1 to manual dexterity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bortoff GA, Strick PL (1993) Corticospinal terminations in two new-world primates: further evidence that corticomotoneuronal connections provide part of the neural substrate for manual dexterity. J Neurosci 13(12):5105–5118

    CAS  PubMed  Google Scholar 

  • Bruce K, Grofova I (1992) Notes on a light and electron microscopic double-labeling method combining anterograde tracing with Phaseolus vulgaris leucoagglutinin and retrograde tracing with cholera toxin subunit B. J Neurosci Methods 45(1–2):23–33. doi:10.1016/0165-0270(92)90040-K

    Article  CAS  PubMed  Google Scholar 

  • Darian-Smith C, Darian-Smith I, Cheema SS (1990) Thalamic projections to sensorimotor cortex in the macaque monkey: use of multiple retrograde fluorescent tracers. J Comp Neurol 299(1):17–46

    Article  CAS  PubMed  Google Scholar 

  • Dum RP, Strick PL (1991) The origin of corticospinal projections from the premotor areas in the frontal lobe. J Neurosci 11(3):667–689

    CAS  PubMed  Google Scholar 

  • Dum RP, Strick PL (2005) Frontal lobe inputs to the digit representations of the motor areas on the lateral surface of the hemisphere. J Neurosci 25(6):1375–1386. doi:10.1523/JNEUROSCI.3902-04.2005

    Article  CAS  PubMed  Google Scholar 

  • Fogassi L, Gallese V, Buccino G, Craighero L, Fadiga L, Rizzolatti G (2001) Cortical mechanism for the visual guidance of hand grasping movements in the monkey: a reversible inactivation study. Brain 124(Pt 3):571–586

    Article  CAS  PubMed  Google Scholar 

  • Gentilucci M, Fogassi L, Luppino G, Matelli M, Camarda R, Rizzolatti G (1988) Functional organization of inferior area 6 in the macaque monkey I. Somatotopy and the control of proximal movements. Exp Brain Res 71(3):475–490

    Article  CAS  PubMed  Google Scholar 

  • Gentilucci M, Fogassi L, Luppino G, Matelli M, Camarda R, Rizzolatti G (1989) Somatotopic representation in inferior area 6 of the macaque monkey. Brain Behav Evol 33(2–3):118–121

    CAS  PubMed  Google Scholar 

  • Gerbella M, Belmalih A, Borra E, Rozzi S, Luppino G (2011) Cortical connections of the anterior (F5a) subdivision of the macaque ventral premotor area F5. Brain Struct Funct 216(1):43–65. doi:10.1007/s00429-010-0293-6

    Article  PubMed  Google Scholar 

  • Gharbawie OA, Stepniewska I, Kaas JH (2011a) Cortical connections of functional zones in posterior parietal cortex and frontal cortex motor regions in New World monkeys. Cereb Cortex 21(9):1981–2002. doi:10.1093/cercor/bhq260

    Article  PubMed  PubMed Central  Google Scholar 

  • Gharbawie OA, Stepniewska I, Qi H, Kaas JH (2011b) Multiple parietal-frontal pathways mediate grasping in macaque monkeys. J Neurosci 31(32):11660–11677. doi:10.1523/JNEUROSCI.1777-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godschalk M, Mitz AR, van Duin B, van der Burg H (1995) Somatotopy of monkey premotor cortex examined with microstimulation. Neurosci Res 23(3):269–279

    Article  CAS  PubMed  Google Scholar 

  • Graziano MS, Taylor CS, Moore T (2002) Complex movements evoked by microstimulation of precentral cortex. Neuron 34(5):841–851

    Article  CAS  PubMed  Google Scholar 

  • Holsapple JW, Preston JB, Strick PL (1991) The origin of thalamic inputs to the “hand” representation in the primary motor cortex. J Neurosci 11(9):2644–2654

    CAS  PubMed  Google Scholar 

  • Hoover JE, Strick PL (1999) The organization of cerebellar and basal ganglia outputs to primary motor cortex as revealed by retrograde transneuronal transport of herpes simplex virus type 1. J Neurosci 19(4):1446–1463

    CAS  PubMed  Google Scholar 

  • Hoshi E, Tremblay L, Feger J, Carras PL, Strick PL (2005) The cerebellum communicates with the basal ganglia. Nat Neurosci 8(11):1491–1493. doi:10.1038/nn1544

    Article  CAS  PubMed  Google Scholar 

  • Jones EG (1985) The thalamus. Plenum Press, New York

    Book  Google Scholar 

  • Jones EG, Leavitt RY (1974) Retrograde axonal transport and the demonstration of non-specific projections to the cerebral cortex and striatum from thalamic intralaminar nuclei in the rat, cat and monkey. J Comp Neurol 154(4):349–377. doi:10.1002/cne.901540402

    Article  CAS  PubMed  Google Scholar 

  • Kaas JH (2008) The somatosensory thalamus and associated pathways. In: Gardner EP, Kaas JH (eds) The senses a comprehensive reference, vol 6, Somatosensation. Elsevier, Oxford, pp 117–141

  • Kuypers HG, Brinkman J (1970) Precentral projections to different parts of the spinal intermediate zone in therhesus monkey. Brain Res 24(1):29–48. doi:10.1016/0006-8993(70)90272-6

    Article  CAS  PubMed  Google Scholar 

  • Macchi G, Jones EG (1997) Toward an agreement on terminology of nuclear and subnuclear divisions of the motor thalamus. J Neurosurg 86(4):670–685. doi:10.3171/jns.1997.86.4.0670

    Article  CAS  PubMed  Google Scholar 

  • Maranesi M, Roda F, Bonini L, Rozzi S, Ferrari PF, Fogassi L, Coude G (2012) Anatomo-functional organization of the ventral primary motor and premotor cortex in the macaque monkey. Eur J Neurosci 36(10):3376–3387. doi:10.1111/j.1460-9568.2012.08252.x

    Article  PubMed  Google Scholar 

  • Matelli M, Luppino G, Rizzolatti G (1985) Patterns of cytochrome oxidase activity in the frontal agranular cortex of the macaque monkey. Behav Brain Res 18(2):125–136

    Article  CAS  PubMed  Google Scholar 

  • Matelli M, Luppino G, Fogassi L, Rizzolatti G (1989) Thalamic input to inferior area 6 and area 4 in the macaque monkey. J Comp Neurol 280(3):468–488

    Article  CAS  PubMed  Google Scholar 

  • McKiernan BJ, Marcario JK, Karrer JH, Cheney PD (1998) Corticomotoneuronal postspike effects in shoulder, elbow, wrist, digit, and intrinsic hand muscles during a reach and prehension task. J Neurophysiol 80(4):1961–1980

    CAS  PubMed  Google Scholar 

  • Morel A, Liu J, Wannier T, Jeanmonod D, Rouiller EM (2005) Divergence and convergence of thalamocortical projections to premotor and supplementary motor cortex: a multiple tracing study in the macaque monkey. Eur J Neurosci 21(4):1007–1029. doi:10.1111/j.1460-9568.2005.03921.x

    Article  PubMed  Google Scholar 

  • Murata A, Fadiga L, Fogassi L, Gallese V, Raos V, Rizzolatti G (1997) Object representation in the ventral premotor cortex (area F5) of the monkey. J Neurophysiol 78(4):2226–2230

    CAS  PubMed  Google Scholar 

  • Nakajima K, Maier MA, Kirkwood PA, Lemon RN (2000) Striking differences in transmission of corticospinal excitation to upper limb motoneurons in two primate species. J Neurophysiol 84(2):698–709

    CAS  PubMed  Google Scholar 

  • Nudo RJ, Masterton RB (1988) Descending pathways to the spinal cord: a comparative study of 22 mammals. J Comp Neurol 277(1):53–79. doi:10.1002/cne.902770105

    Article  CAS  PubMed  Google Scholar 

  • Olszewski J (1952) The thalamus of Macaca Mulatta. Krager, Basel

    Google Scholar 

  • Park MC, Belhaj-Saif A, Gordon M, Cheney PD (2001) Consistent features in the forelimb representation of primary motor cortex in rhesus macaques. J Neurosci 21(8):2784–2792

    CAS  PubMed  Google Scholar 

  • Park MC, Belhaj-Saif A, Cheney PD (2004) Properties of primary motor cortex output to forelimb muscles in rhesus macaques. J Neurophysiol 92(5):2968–2984. doi:10.1152/jn.00649.2003

    Article  PubMed  Google Scholar 

  • Picard N, Smith AM (1992) Primary motor cortical activity related to the weight and texture of grasped objects in the monkey. J Neurophysiol 68(5):1867–1881

    CAS  PubMed  Google Scholar 

  • Qi HX, Stepniewska I, Kaas JH (2000) Reorganization of primary motor cortex in adult macaque monkeys with long-standing amputations. J Neurophysiol 84(4):2133–2147

    CAS  PubMed  Google Scholar 

  • Qi HX, Jain N, Collins CE, Lyon DC, Kaas JH (2010) Functional organization of motor cortex of adult macaque monkeys is altered by sensory loss in infancy. Proc Natl Acad Sci USA 107(7):3192–3197. doi:10.1073/pnas.0914962107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raos V, Umilta MA, Murata A, Fogassi L, Gallese V (2006) Functional properties of grasping-related neurons in the ventral premotor area F5 of the macaque monkey. J Neurophysiol 95(2):709–729. doi:10.1152/jn.00463.2005

    Article  PubMed  Google Scholar 

  • Rathelot JA, Strick PL (2006) Muscle representation in the macaque motor cortex: an anatomical perspective. Proc Natl Acad Sci USA 103(21):8257–8262. doi:10.1073/Pnas.0602933103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rathelot JA, Strick PL (2009) Subdivisions of primary motor cortex based on cortico-motoneuronal cells. Proc Natl Acad Sci USA 106(3):918–923. doi:10.1073/pnas.0808362106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rizzolatti G, Camarda R, Fogassi L, Gentilucci M, Luppino G, Matelli M (1988) Functional organization of inferior area 6 in the macaque monkey II. Area F5 and the control of distal movements. Exp Brain Res 71(3):491–507

    Article  CAS  PubMed  Google Scholar 

  • Rouiller EM, Liang F, Babalian A, Moret V, Wiesendanger M (1994) Cerebellothalamocortical and pallidothalamocortical projections to the primary and supplementary motor cortical areas: a multiple tracing study in macaque monkeys. J Comp Neurol 345(2):185–213. doi:10.1002/cne.903450204

    Article  CAS  PubMed  Google Scholar 

  • Rouiller EM, Tanne J, Moret V, Boussaoud D (1999) Origin of thalamic inputs to the primary, premotor, and supplementary motor cortical areas and to area 46 in macaque monkeys: a multiple retrograde tracing study. J Comp Neurol 409(1):131–152. doi:10.1002/(SICI)1096-9861(19990621)409:1<131:AID-CNE10>3.0.CO;2-A

    Article  CAS  PubMed  Google Scholar 

  • Sakai ST, Inase M, Tanji J (1996) Comparison of cerebellothalamic and pallidothalamic projections in the monkey (Macaca fuscata): a double anterograde labeling study. J Comp Neurol 368(2):215–228. doi:10.1002/(SICI)1096-9861(19960429)368:2<215:AID-CNE4>3.0.CO;2-6

    Article  CAS  PubMed  Google Scholar 

  • Schell GR, Strick PL (1984) The origin of thalamic inputs to the arcuate premotor and supplementary motor areas. J Neurosci 4(2):539–560

    CAS  PubMed  Google Scholar 

  • Schieber MH (2001) Constraints on somatotopic organization in the primary motor cortex. J Neurophysiol 86(5):2125–2143

    CAS  PubMed  Google Scholar 

  • Stepniewska I, Preuss TM, Kaas JH (1994a) Architectonic subdivisions of the motor thalamus of owl monkeys: Nissl, acetylcholinesterase, and cytochrome oxidase patterns. J Comp Neurol 349(4):536–557

    Article  CAS  PubMed  Google Scholar 

  • Stepniewska I, Preuss TM, Kaas JH (1994b) Thalamic connections of the primary motor cortex (M1) of owl monkeys. J Comp Neurol 349(4):558–582

    Article  CAS  PubMed  Google Scholar 

  • Stepniewska I, Sakai ST, Qi HX, Kaas JH (2003) Somatosensory input to the ventrolateral thalamic region in the macaque monkey: potential substrate for parkinsonian tremor. J Comp Neurol 455(3):378–395. doi:10.1002/cne.10499

    Article  PubMed  Google Scholar 

  • Stepniewska I, Fang PC, Kaas JH (2005) Microstimulation reveals specialized subregions for different complex movements in posterior parietal cortex of prosimian galagos. Proc Natl Acad Sci USA 102(13):4878–4883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strick PL, Kim CC (1978) Input to primate motor cortex from posterior parietal cortex (area 5) I. Demonstration by retrograde transport. Brain Res 157:325–330

    Article  CAS  PubMed  Google Scholar 

  • Umilta MA, Brochier T, Spinks RL, Lemon RN (2007) Simultaneous recording of macaque premotor and primary motor cortex neuronal populations reveals different functional contributions to visuomotor grasp. J Neurophysiol 98(1):488–501. doi:10.1152/jn.01094.2006

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by grants from the National Institutes of Health (EY2686 to J.H.K, NS055843 to I.S.). O.A.G was supported by a postdoctoral fellowship from the Canadian Institutes of Health Research followed by a career development award from the National Institutes of Health (K99 NS079471). We are grateful to Drs. Nicole Young, Mary Baldwin, Pooja Balaram, and Barbara O’Brien, for assistance with motor mapping. Laura Trice provided excellent support for histology and Mary Feurtado was instrumental to pre- and post-operative animal care.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar A. Gharbawie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gharbawie, O.A., Stepniewska, I. & Kaas, J.H. The origins of thalamic inputs to grasp zones in frontal cortex of macaque monkeys. Brain Struct Funct 221, 3123–3140 (2016). https://doi.org/10.1007/s00429-015-1091-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-015-1091-y

Keywords

Navigation