Skip to main content

Advertisement

Log in

Anosmin-1 over-expression regulates oligodendrocyte precursor cell proliferation, migration and myelin sheath thickness

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

An Erratum to this article was published on 13 March 2015

Abstract

During development of the central nervous system, anosmin-1 (A1) works as a chemotropic cue contributing to axonal outgrowth and collateralization, as well as modulating the migration of different cell types, fibroblast growth factor receptor 1 (FGFR1) being the main receptor involved in all these events. To further understand the role of A1 during development, we have analysed the over-expression of human A1 in a transgenic mouse line. Compared with control mice during development and in early adulthood, A1 over-expressing transgenic mice showed an enhanced oligodendrocyte precursor cell (OPC) proliferation and a higher number of OPCs in the subventricular zone and in the corpus callosum (CC). The migratory capacity of OPCs from the transgenic mice is increased in vitro due to a higher basal activation of ERK1/2 mediated through FGFR1 and they also produced more myelin basic protein (MBP). In vivo, the over-expression of A1 resulted in an elevated number of mature oligodendrocytes with higher levels of MBP mRNA and protein, as well as increased levels of activation of the ERK1/2 proteins, while electron microscopy revealed thicker myelin sheaths around the axons of the CC in adulthood. Also in the mature CC, the nodes of Ranvier were significantly longer and the conduction velocity of the nerve impulse in vivo was significantly increased in the CC of A1 over-expressing transgenic mice. Altogether, these data confirmed the involvement of A1 in oligodendrogliogenesis and its relevance for myelination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aguirre A, Chittajallu R, Belachew S, Gallo V (2004) NG2-expressing cells in the subventricular zone are type C-like cells and contribute to interneuron generation in the postnatal hippocampus. JCell Biol 165(4):575–589

    Article  CAS  Google Scholar 

  • Andrenacci D, Grimaldi MR, Panetta V, Riano E, Rugarli EI, Graziani F (2006) Functional dissection of the Drosophila Kallmann’s syndrome protein DmKal-1. BMC Genet 7:47. doi:10.1186/1471-2156-7-47

    Article  PubMed  PubMed Central  Google Scholar 

  • Ayari B, Soussi-Yanicostas N (2007) FGFR1 and anosmin-1 underlying genetically distinct forms of Kallmann syndrome are co-expressed and interact in olfactory bulbs. DevGenes Evol 217(2):169–175

    CAS  Google Scholar 

  • Bakiri Y, Karadottir R, Cossell L, Attwell D (2011) Morphological and electrical properties of oligodendrocytes in the white matter of the corpus callosum and cerebellum. J Physiol 589(Pt 3):559–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bansal R, Magge S, Winkler S (2003) Specific inhibitor of FGF receptor signaling: FGF-2-mediated effects on proliferation, differentiation, and MAPK activation are inhibited by PD173074 in oligodendrocyte-lineage cells. J Neurosci Res 74(4):486–493

    Article  CAS  PubMed  Google Scholar 

  • Barres BA, Raff MC, Gaese F, Bartke I, Dechant G, Barde YA (1994) A crucial role for neurotrophin-3 in oligodendrocyte development. Nature 367(6461):371–375. doi:10.1038/367371a0

    Article  CAS  PubMed  Google Scholar 

  • Bekku Y, Vargova L, Goto Y, Vorisek I, Dmytrenko L, Narasaki M, Ohtsuka A, Fassler R, Ninomiya Y, Sykova E, Oohashi T (2010) Bral1: its role in diffusion barrier formation and conduction velocity in the CNS. J Neurosci 30(8):3113–3123

    Article  CAS  PubMed  Google Scholar 

  • Boyd A, Zhang H, Williams A (2013) Insufficient OPC migration into demyelinated lesions is a cause of poor remyelination in MS and mouse models. Acta Neuropathol 125(6):841–859. doi:10.1007/s00401-013-1112-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bribián A, Barallobre MJ, Soussi-Yanicostas N, de Castro F (2006) Anosmin-1 modulates the FGF-2-dependent migration of oligodendrocyte precursors in the developing optic nerve. Mol Cell Neurosci 33(1):2–14

    Article  PubMed  Google Scholar 

  • Bribián A, Esteban PF, Clemente D, Soussi-Yanicostas N, Thomas JL, Zalc B, de Castro F (2008) A novel role for anosmin-1 in the adhesion and migration of oligodendrocyte precursors. Dev Neurobiol 68(13):1503–1516

    Article  PubMed  Google Scholar 

  • Bulow HE, Hobert O (2004) Differential sulfations and epimerization define heparan sulfate specificity in nervous system development. Neuron 41(5):723–736

    Article  PubMed  Google Scholar 

  • Canoll PD, Musacchio JM, Hardy R, Reynolds R, Marchionni MA, Salzer JL (1996) GGF/neuregulin is a neuronal signal that promotes the proliferation and survival and inhibits the differentiation of oligodendrocyte progenitors. Neuron 17(2):229–243

    Article  CAS  PubMed  Google Scholar 

  • Cariboni A, Pimpinelli F, Colamarino S, Zaninetti R, Piccolella M, Rumio C, Piva F, Rugarli EI, Maggi R (2004) The product of X-linked Kallmann’s syndrome gene (KAL1) affects the migratory activity of gonadotropin-releasing hormone (GnRH)-producing neurons. Hum Mol Genet 13(22):2781–2791

    Article  CAS  PubMed  Google Scholar 

  • Carson MJ, Behringer RR, Brinster RL, McMorris FA (1993) Insulin-like growth factor I increases brain growth and central nervous system myelination in transgenic mice. Neuron 10(4):729–740

    Article  CAS  PubMed  Google Scholar 

  • Choy CT, Kim H, Lee JY, Williams DM, Palethorpe D, Fellows G, Wright AJ, Laing K, Bridges LR, Howe FA, Kim SH (2014) Anosmin-1 contributes to brain tumor malignancy through integrin signal pathways. Endocr Relat Cancer. doi:10.1530/erc-13-0181

    PubMed  PubMed Central  Google Scholar 

  • Clemente D, Ortega MC, Arenzana FJ, de Castro F (2011) FGF-2 and Anosmin-1 are selectively expressed in different types of multiple sclerosis lesions. J Neurosci 31(42):14899–14909

    Article  CAS  PubMed  Google Scholar 

  • Corfas G, Roy K, Buxbaum JD (2004) Neuregulin 1-erbB signaling and the molecular/cellular basis of schizophrenia. Nat Neurosci 7(6):575–580

    Article  CAS  PubMed  Google Scholar 

  • de Castro F, Bribian A, Ortega MC (2013) Regulation of oligodendrocyte precursor migration during development, in adulthood and in pathology. Cell Mol Life Sci 70(22):4355–4368

    Article  PubMed  Google Scholar 

  • Dellovade TL, Hardelin JP, Soussi-Yanicostas N, Pfaff DW, Schwanzel-Fukuda M, Petit C (2003) Anosmin-1 immunoreactivity during embryogenesis in a primitive eutherian mammal. Brain Res Dev Brain Res 140(2):157–167

    Article  CAS  PubMed  Google Scholar 

  • Dodé C, Levilliers J, Dupont JM, De PA, Le DN, Soussi-Yanicostas N, Coimbra RS, Delmaghani S, Compain-Nouaille S, Baverel F, Pecheux C, Le TD, Cruaud C, Delpech M, Speleman F, Vermeulen S, Amalfitano A, Bachelot Y, Bouchard P, Cabrol S, Carel JC, Van de Emarre WH, Goulet-Salmon B, Kottler ML, Richard O, Sánchez-Franco F, Saura R, Young J, Petit C, Hardelin JP (2003) Loss-of-function mutations in FGFR1 cause autosomal dominant Kallmann syndrome. Nat Genet 33(4):463–465

    Article  PubMed  Google Scholar 

  • Endo Y, Ishiwata-Endo H, Yamada KM (2012) Extracellular matrix protein anosmin promotes neural crest formation and regulates FGF, BMP, and WNT activities. Dev Cell 23(2):305–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esteban PF, Murcia-Belmonte V, Garcia-Gonzalez D, de Castro F (2013) The cysteine-rich region and the whey acidic protein domain are essential for anosmin-1 biological functions. J Neurochem 124(5):708–720. doi:10.1111/jnc.12104

    Article  CAS  PubMed  Google Scholar 

  • Flores AI, Narayanan SP, Morse EN, Shick HE, Yin X, Kidd G, Ávila RL, Kirschner DA, Macklin WB (2008) Constitutively active Akt induces enhanced myelination in the CNS. J Neurosci 28(28):7174–7183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fortin D, Rom E, Sun H, Yayon A, Bansal R (2005) Distinct fibroblast growth factor (FGF)/FGF receptor signaling pairs initiate diverse cellular responses in the oligodendrocyte lineage. J Neurosci 25(32):7470–7479

    Article  CAS  PubMed  Google Scholar 

  • Franco B, Guioli S, Pragliola A, Incerti B, Bardoni B, Tonlorenzi R, Carrozzo R, Maestrini E, Pieretti M, Taillon-Miller P, Brown CJ, Willard HF, Lawrence C, Graziella PM, Camerino G, Ballabio A (1991) A gene deleted in Kallmann’s syndrome shares homology with neural cell adhesion and axonal path-finding molecules. Nature 353(6344):529–536

    Article  CAS  PubMed  Google Scholar 

  • Frohman EM, Racke MK, Raine CS (2006) Multiple sclerosis–the plaque and its pathogenesis. N Engl J Med 354(9):942–955

    Article  CAS  PubMed  Google Scholar 

  • Furusho M, Kaga Y, Ishii A, Hebert JM, Bansal R (2011) Fibroblast growth factor signaling is required for the generation of oligodendrocyte progenitors from the embryonic forebrain. J Neurosci 31(13):5055–5066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furusho M, Dupree JL, Nave KA, Bansal R (2012) Fibroblast growth factor receptor signaling in oligodendrocytes regulates myelin sheath thickness. J Neurosci 32(19):6631–6641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García-González D, Clemente D, Coelho M, Esteban PF, Soussi-Yanicostas N, de Castro F (2010) Dynamic roles of FGF-2 and Anosmin-1 in the migration of neuronal precursors from the subventricular zone during pre- and postnatal development. Exp Neurol 222(2):285–295

    Article  PubMed  Google Scholar 

  • García-González D, Murcia-Belmonte V, Esteban PF, Ortega F, Díaz D, Sánchez-Vera I, Lebrón-Galán R, Escobar-Castanondo L, Martínez-Millán L, Weruaga E, García-Verdugo JM, Berninger B, de Castro F (2014) Anosmin-1 over-expression increases adult neurogenesis in the subventricular zone and neuroblast migration to the olfactory bulb. Brain Struct Funct. doi:10.1007/s00429-014-0904-8

    PubMed  Google Scholar 

  • Goebbels S, Oltrogge JH, Kemper R, Heilmann I, Bormuth I, Wolfer S, Wichert SP, Mobius W, Liu X, Lappe-Siefke C, Rossner MJ, Groszer M, Suter U, Frahm J, Boretius S, Nave KA (2010) Elevated phosphatidylinositol 3,4,5-trisphosphate in glia triggers cell-autonomous membrane wrapping and myelination. J Neurosci 30(26):8953–8964. doi:10.1523/jneurosci.0219-10.2010

    Article  CAS  PubMed  Google Scholar 

  • González-Martínez D, Kim SH, Hu Y, Guimond S, Schofield J, Winyard P, Vannelli GB, Turnbull J, Bouloux PM (2004) Anosmin-1 modulates fibroblast growth factor receptor 1 signaling in human gonadotropin-releasing hormone olfactory neuroblasts through a heparan sulfate-dependent mechanism. J Neurosci 24(46):10384–10392

    Article  PubMed  Google Scholar 

  • Hack MA, Saghatelyan A, de Chevigny A, Pfeifer A, Shery-Padan R, Lledó PM, Götz M (2005) Neuronal fate determinants of adult olfactory bulb neurogenesis. Nat Neurosci 8(7):865–872

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, González-Martínez D, Kim SH, Bouloux PM (2004) Cross-talk of anosmin-1, the protein implicated in X-linked Kallmann’s syndrome, with heparan sulphate and urokinase-type plasminogen activator. BiochemJ 384(Pt 3):495–505

    Article  CAS  Google Scholar 

  • Hu JG, Fu SL, Wang YX, Li Y, Jiang XY, Wang XF, Qiu MS, Lu PH, Xu XM (2008) Platelet-derived growth factor-AA mediates oligodendrocyte lineage differentiation through activation of extracellular signal-regulated kinase signaling pathway. Neuroscience 151(1):138–147

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Guimond SE, Travers P, Cadman S, Hohenester E, Turnbull JE, Kim SH, Bouloux PM (2009) Novel mechanisms of fibroblast growth factor receptor 1 regulation by extracellular matrix protein anosmin-1. J Biol Chem 284(43):29905–29920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Poopalasundaram S, Graham A, Bouloux PM (2013) GnRH neuronal migration and olfactory bulb neurite outgrowth are dependent on FGF receptor 1 signaling, specifically via the PI3K p110alpha isoform in chick embryo. Endocrinology 154(1):388–399. doi:10.1210/en.2012-1555

    Article  CAS  PubMed  Google Scholar 

  • Hudson ML, Kinnunen T, Cinar HN, Chisholm AD (2006) C. elegans Kallmann syndrome protein KAL-1 interacts with syndecan and glypican to regulate neuronal cell migrations. Dev Biol 294(2):352–365. doi:10.1016/j.ydbio.2006.02.036

    Article  CAS  PubMed  Google Scholar 

  • Hughes EG, Kang SH, Fukaya M, Bergles DE (2013) Oligodendrocyte progenitors balance growth with self-repulsion to achieve homeostasis in the adult brain. Nat Neurosci 16(6):668–676. doi:10.1038/nn.3390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishii A, Fyffe-Maricich SL, Furusho M, Miller RH, Bansal R (2012) ERK1/ERK2 MAPK signaling is required to increase myelin thickness independent of oligodendrocyte differentiation and initiation of myelination. J Neurosci 32(26):8855–8864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishii A, Furusho M, Bansal R (2013) Sustained activation of ERK1/2 MAPK in oligodendrocytes and schwann cells enhances myelin growth and stimulates oligodendrocyte progenitor expansion. J Neurosci 33(1):175–186. doi:10.1523/JNEUROSCI.4403-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs EC, Reyes SD, Campagnoni CW, Irene GM, Kampf K, Handley V, Spreuer V, Fisher R, Macklin W, Campagnoni AT (2009) Targeted overexpression of a golli-myelin basic protein isoform to oligodendrocytes results in aberrant oligodendrocyte maturation and myelination. ASN Neuro 1(4):pii: e00017. doi:10.1042/AN20090029

    Article  Google Scholar 

  • Jian B, Nagineni CN, Meleth S, Grizzle W, Bland K, Chaudry I, Raju R (2009) Anosmin-1 involved in neuronal cell migration is hypoxia inducible and cancer regulated. Cell Cycle (Georgetown, Tex) 8(22):3770–3776

    Article  CAS  Google Scholar 

  • Kallmann F, Schoenfeld W, Barrera S (1944) The genetic aspects of primary eunuchoidism. Am J Ment Defic 48:203–236

    Google Scholar 

  • Kamasawa N, Sik A, Morita M, Yasumura T, Davidson KG, Nagy JI, Rash JE (2005) Connexin-47 and connexin-32 in gap junctions of oligodendrocyte somata, myelin sheaths, paranodal loops and Schmidt-Lanterman incisures: implications for ionic homeostasis and potassium siphoning. Neuroscience 136(1):65–86. doi:10.1016/j.neuroscience.2005.08.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kessaris N, Fogarty M, Iannarelli P, Grist M, Wegner M, Richardson WD (2006) Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage. Nat Neurosci 9(2):173–179

    Article  CAS  PubMed  Google Scholar 

  • Lee X, Hu Y, Zhang Y, Yang Z, Shao Z, Qiu M, Pepinsky B, Miller RH, Mi S (2011) Oligodendrocyte differentiation and myelination defects in OMgp null mice. Mol Cell Neurosci 46(4):752–761

    Article  CAS  PubMed  Google Scholar 

  • Legouis R, Hardelin JP, Levilliers J, Claverie JM, Compain S, Wunderle V, Millasseau P, Le PD, Cohen D, Caterina D (1991) The candidate gene for the X-linked Kallmann syndrome encodes a protein related to adhesion molecules. Cell 67(2):423–435

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Cao W, Chen W, Xu L, Zhang C (2014) Decreased expression of Kallmann syndrome 1 sequence gene (KAL1) contributes to oral squamous cell carcinoma progression and significantly correlates with poorly differentiated grade. J Oral Pathol Med. doi:10.1111/jop.12206

    Google Scholar 

  • Lu Z, Ku L, Chen Y, Feng Y (2005) Developmental abnormalities of myelin basic protein expression in fyn knock-out brain reveal a role of Fyn in posttranscriptional regulation. J Biol Chem 280(1):389–395

    Article  CAS  PubMed  Google Scholar 

  • Maestre San de Juan A (1856) Teratología: falta total de los nervios olfatorios con anosmia en un individuo en quien existía una atrofia congénita de los testículos y el miembro viril. El Siglo Médico 3:211

    Google Scholar 

  • Maire CL, Wegener A, Kerninon C, Nait OB (2010) Gain-of-function of Olig transcription factors enhances oligodendrogenesis and myelination. Stem Cells 28(9):1611–1622

    Article  CAS  PubMed  Google Scholar 

  • McCarthy KD, de Vellis J (1980) Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol 85(3):890-902

  • McMorris FA, Dubois-Dalcq M (1988) Insulin-like growth factor I promotes cell proliferation and oligodendroglial commitment in rat glial progenitor cells developing in vitro. J Neurosci Res 21(2–4):199–209. doi:10.1002/jnr.490210212

    Article  CAS  PubMed  Google Scholar 

  • Medina-Rodriguez EM, Arenzana FJ, Pastor J, Redondo M, Palomo V, Garcia de Sola R, Gil C, Martinez A, Bribian A, de Castro F (2013) Inhibition of endogenous phosphodiesterase 7 promotes oligodendrocyte precursor differentiation and survival. CMLS 70(18):3449–3462. doi:10.1007/s00018-013-1340-2

    Article  CAS  PubMed  Google Scholar 

  • Menn B, García-Verdugo JM, Yaschine C, Gónzalez-Pérez O, Rowitch D, Álvarez-Buylla A (2006) Origin of oligodendrocytes in the subventricular zone of the adult brain. J Neurosci 26(30):7907–7918

    Article  CAS  PubMed  Google Scholar 

  • Merchán P, Bribián A, Sánchez-Camacho C, Lezameta M, Bovolenta P, de Castro F (2007) Sonic hedgehog promotes the migration and proliferation of optic nerve oligodendrocyte precursors. Mol Cell Neurosci 36(3):355–368

    Article  PubMed  Google Scholar 

  • Michailov GV, Sereda MW, Brinkmann BG, Fischer TM, Haug B, Birchmeier C, Role L, Lai C, Schwab MH, Nave KA (2004) Axonal neuregulin-1 regulates myelin sheath thickness. Science 304(5671):700–703

    Article  CAS  PubMed  Google Scholar 

  • Molina-Holgado E, Vela JM, Arévalo-Martín A, Almazan G, Molina-Holgado F, Borrell J, Guaza C (2002) Cannabinoids promote oligodendrocyte progenitor survival: involvement of cannabinoid receptors and phosphatidylinositol-3 kinase/Akt signaling. J Neurosci 22(22):9742–9753

    CAS  PubMed  Google Scholar 

  • Mori F, Rossi S, Piccinin S, Motta C, Mango D, Kusayanagi H, Bergami A, Studer V, Nicoletti CG, Buttari F, Barbieri F, Mercuri NB, Martino G, Furlan R, Nistico R, Centonze D (2013) Synaptic plasticity and PDGF signaling defects underlie clinical progression in multiple sclerosis. J Neurosci 33(49):19112–19119. doi:10.1523/jneurosci.2536-13.2013

    Article  CAS  PubMed  Google Scholar 

  • Murcia-Belmonte V, Esteban PF, García-González D, de Castro F (2010) Biochemical dissection of Anosmin-1 interaction with FGFR1 and components of the extracellular matrix. J Neurochem 115(5):1256–1265

    Article  CAS  PubMed  Google Scholar 

  • Murcia-Belmonte V, Medina-Rodriguez EM, Bribian A, de Castro F, Esteban PF (2014) ERK1/2 signaling is essential for the chemoattraction exerted by human FGF2 and human anosmin-1 on newborn rat and mouse OPCs via FGFR1. Glia 62(3):374–386. doi:10.1002/glia.22609

    Article  PubMed  Google Scholar 

  • Ohkubo Y, Uchida AO, Shin D, Partanen J, Vaccarino FM (2004) Fibroblast growth factor receptor 1 is required for the proliferation of hippocampal progenitor cells and for hippocampal growth in mouse. J Neurosci 24(27):6057–6069. doi:10.1523/jneurosci.1140-04.2004

    Article  CAS  PubMed  Google Scholar 

  • Ohya W, Funakoshi H, Kurosawa T, Nakamura T (2007) Hepatocyte growth factor (HGF) promotes oligodendrocyte progenitor cell proliferation and inhibits its differentiation during postnatal development in the rat. Brain Res 1147:51–65

    Article  CAS  PubMed  Google Scholar 

  • Ortega MC, Cases O, Merchán P, Kozyraki R, Clemente D, de Castro F (2012) Megalin mediates the influence of sonic hedgehog on oligodendrocyte precursor cell migration and proliferation during development. Glia 60(6):851–866. doi:10.1002/glia.22316

    Article  PubMed  Google Scholar 

  • Pang Y, Fan LW, Tien LT, Dai X, Zheng B, Cai Z, Lin RC, Bhatt A (2013) Differential roles of astrocyte and microglia in supporting oligodendrocyte development and myelination in vitro. Brain Behav 3(5):503–514. doi:10.1002/brb3.152

    Article  PubMed  PubMed Central  Google Scholar 

  • Paxinos G, Franklin KBJ (2001) The mouse brain in stereotaxic coordinates, 2nd edn. Academic Press, San Diego

  • Pringle NP, Mudhar HS, Collarini EJ, Richardson WD (1992) PDGF receptors in the rat CNS: during late neurogenesis, PDGF alpha-receptor expression appears to be restricted to glial cells of the oligodendrocyte lineage. Development 115(2):535–551

    CAS  PubMed  Google Scholar 

  • Richardson AG, McIntyre CC, Grill WM (2000) Modelling the effects of electric fields on nerve fibres: influence of the myelin sheath. Med Biol Eng Comput 38(4):438–446

    Article  CAS  PubMed  Google Scholar 

  • Richardson WD, Kessaris N, Pringle N (2006) Oligodendrocyte wars. Nat Rev Neurosci 7(1):11–18. doi:10.1038/nrn1826

    Article  CAS  PubMed  Google Scholar 

  • Robaglia-Schlupp A, Pizant J, Norreel JC, Passage E, Saberan-Djoneidi D, Ansaldi JL, Vinay L, Figarella-Branger D, Levy N, Clarac F, Cau P, Pellissier JF, Fontes M (2002) PMP22 overexpression causes dysmyelination in mice. Brain 125(Pt 10):2213–2221

    Article  CAS  PubMed  Google Scholar 

  • Rowitch DH (2004) Glial specification in the vertebrate neural tube. Nat Rev Neurosci 5(5):409–419. doi:10.1038/nrn1389

    Article  CAS  PubMed  Google Scholar 

  • Rugarli EI, Di Schiavi E, Hilliard MA, Arbucci S, Ghezzi C, Facciolli A, Coppola G, Ballabio A, Bazzicalupo P (2002) The Kallmann syndrome gene homolog in C. elegans is involved in epidermal morphogenesis and neurite branching. Development 129(5):1283–1294

    CAS  PubMed  Google Scholar 

  • Savvaki M, Panagiotaropoulos T, Stamatakis A, Sargiannidou I, Karatzioula P, Watanabe K, Stylianopoulou F, Karagogeos D, Kleopa KA (2008) Impairment of learning and memory in TAG-1 deficient mice associated with shorter CNS internodes and disrupted juxtaparanodes. Mol Cell Neurosci 39(3):478–490

    Article  CAS  PubMed  Google Scholar 

  • Schaeren-Wiemers N, Gerfin-Moser A (1993) A single protocol to detect transcripts of various types and expression levels in neural tissue and cultured cells: in situ hybridization using digoxigenin-labelled cRNA probes. Histochemistry 100(6):431–440

    Article  CAS  PubMed  Google Scholar 

  • Spassky N, de Castro F, Le BB, Heydon K, Queraud-LeSaux F, Bloch-Gallego E, Chédotal A, Zalc B, Thomas JL (2002) Directional guidance of oligodendroglial migration by class 3 semaphorins and netrin-1. J Neurosci 22(14):5992–6004

    CAS  PubMed  Google Scholar 

  • Sturrock RR (1980) Myelination of the mouse corpus callosum. Neuropathol Appl Neurobiol 6(6):415–420

    Article  CAS  PubMed  Google Scholar 

  • Susuki K, Chang KJ, Zollinger DR, Liu Y, Ogawa Y, Eshed-Eisenbach Y, Dours-Zimmermann MT, Oses-Prieto JA, Burlingame AL, Seidenbecher CI, Zimmermann DR, Oohashi T, Peles E, Rasband MN (2013) Three mechanisms assemble central nervous system nodes of Ranvier. Neuron 78(3):469–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka H, Ma J, Tanaka KF, Takao K, Komada M, Tanda K, Suzuki A, Ishibashi T, Baba H, Isa T, Shigemoto R, Ono K, Miyakawa T, Ikenaka K (2009) Mice with altered myelin proteolipid protein gene expression display cognitive deficits accompanied by abnormal neuron-glia interactions and decreased conduction velocities. J Neurosci 29(26):8363–8371

    Article  CAS  PubMed  Google Scholar 

  • Trokovic R, Trokovic N, Hernesniemi S, Pirvola U, Vogt Weisenhorn DM, Rossant J, McMahon AP, Wurst W, Partanen J (2003) FGFR1 is independently required in both developing mid- and hindbrain for sustained response to isthmic signals. EMBO J 22(8):1811–1823. doi:10.1093/emboj/cdg169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai HH, Miller RH (2002) Glial cell migration directed by axon guidance cues. Trends Neurosci 25(4):173–175 (discussion 175–176)

    Article  CAS  PubMed  Google Scholar 

  • Villacampa N, Almolda B, Gonzalez B, Castellano B (2013) Tomato lectin histochemistry for microglial visualization. Methods Mol Biol (Clifton, NJ) 1041:261–279. doi:10.1007/978-1-62703-520-0_23

    Article  CAS  Google Scholar 

  • Wang Y, Imitola J, Rasmussen S, O’Connor KC, Khoury SJ (2008) Paradoxical dysregulation of the neural stem cell pathway sonic hedgehog-Gli1 in autoimmune encephalomyelitis and multiple sclerosis. Ann Neurol 64(4):417–427. doi:10.1002/ana.21457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watkins TA, Emery B, Mulinyawe S, Barres BA (2008) Distinct stages of myelination regulated by gamma-secretase and astrocytes in a rapidly myelinating CNS coculture system. Neuron 60(4):555–569. doi:10.1016/j.neuron.2008.09.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waxman SG (1980) Determinants of conduction velocity in myelinated nerve fibers. Muscle Nerve 3(2):141–150

    Article  CAS  PubMed  Google Scholar 

  • Waxman SG (1997) Axon-glia interactions: building a smart nerve fiber. Curr Biol 7(7):R406–R410

    Article  CAS  PubMed  Google Scholar 

  • White R, Kramer-Albers EM (2014) Axon-glia interaction and membrane traffic in myelin formation. Front Cell Neurosci 7:284. doi:10.3389/fncel.2013.00284

    Article  PubMed  PubMed Central  Google Scholar 

  • Williams A, Piaton G, Aigrot MS, Belhadi A, Theaudin M, Petermann F, Thomas JL, Zalc B, Lubetzki C (2007) Semaphorin 3A and 3F: key players in myelin repair in multiple sclerosis? Brain 130(Pt 10):2554–2565. doi:10.1093/brain/awm202

    Article  PubMed  Google Scholar 

  • Wong AW, Xiao J, Kemper D, Kilpatrick TJ, Murray SS (2013) Oligodendroglial expression of TrkB independently regulates myelination and progenitor cell proliferation. J Neurosci 33(11):4947–4957. doi:10.1523/jneurosci.3990-12.2013

    Article  CAS  PubMed  Google Scholar 

  • Xiao J, Ferner AH, Wong AW, Denham M, Kilpatrick TJ, Murray SS (2012) Extracellular signal-regulated kinase 1/2 signaling promotes oligodendrocyte myelination in vitro. J Neurochem 122(6):1167–1180. doi:10.1111/j.1471-4159.2012.07871.x

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki Y, Hozumi Y, Kaneko K, Sugihara T, Fujii S, Goto K, Kato H (2007) Modulatory effects of oligodendrocytes on the conduction velocity of action potentials along axons in the alveus of the rat hippocampal CA1 region. Neuron Glia Biol 3(4):325–334

    Article  PubMed  Google Scholar 

  • Yanicostas C, Herbomel E, Dipietromaria A, Soussi-Yanicostas N (2009) Anosmin-1a is required for fasciculation and terminal targeting of olfactory sensory neuron axons in the zebrafish olfactory system. Mol Cell Endocrinol 312(1–2):53–60. doi:10.1016/j.mce.2009.04.017

    Article  CAS  PubMed  Google Scholar 

  • Young KM, Psachoulia K, Tripathi RB, Dunn SJ, Cossell L, Attwell D, Tohyama K, Richardson WD (2013) Oligodendrocyte dynamics in the healthy adult CNS: evidence for myelin remodeling. Neuron 77(5):873–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmermann DR, Dours-Zimmermann MT (2008) Extracellular matrix of the central nervous system: from neglect to challenge. Histochem Cell Biol 130(4):635–653

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. José Ángel Rodríguez Alfaro and Dr. Javier Mazarío for their help with the confocal imaging, to Isabel Machín, Rafael Lebrón, Iris Sánchez, Jacinto Sarmentero, and José María González for their technical assistance, and to Mr. Roger Churchill for his editorial help. We are also grateful to Dr. Diego García González for the critical reading of the manuscript. This work was supported by grants from the Spanish Ministerio de Economía y Competitividad-MINECO (Grant Numbers SAF2009-07842, SAF2012-40023, RD07-0060-2007 and RD12-0032-12 Red Española de Esclerosis Múltple) and the “Fundación Eugenio Rodríguez Pascual” to FdC; the Fundación para la Investigación Socio-sanitaria de Castilla La-Mancha FISCAM (Grant Number PI2007-66 to FdC and PI2009-29 to PFE); from the Spanish MINECO (Grant Numbers BFU2008-00899 and BFU2008-03390) and the Junta de Andalucía (Grant Numbers BIO-122, CVI-02487 and P07-CVI-02686) to JMDG and AGM; and from the Spanish MINECO (Grant Number BFU-2009-08404) to RL. VMB was hired under FISCAM (MOV2007-JI/19), SAF2009-07842 and RD07-0060-2007; PFE was hired by the Servicio de Salud de Castilla La-Mancha (SESCAM, Gobierno de Castilla-La Mancha) and under grant ADE10-0010 from MINECO to FdC. FdC is a CSIC Staff Scientist on leave of absence and currently hired by SESCAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando de Castro.

Additional information

We acknowledge Pedro F. Esteban and Fernando de Castro for their joint supervision.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murcia-Belmonte, V., Esteban, P.F., Martínez-Hernández, J. et al. Anosmin-1 over-expression regulates oligodendrocyte precursor cell proliferation, migration and myelin sheath thickness. Brain Struct Funct 221, 1365–1385 (2016). https://doi.org/10.1007/s00429-014-0977-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-014-0977-4

Keywords

Navigation