Skip to main content
Log in

Striatal GABA-MRS predicts response inhibition performance and its cortical electrophysiological correlates

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Response inhibition processes are important for performance monitoring and are mediated via a network constituted by different cortical areas and basal ganglia nuclei. At the basal ganglia level, striatal GABAergic medium spiny neurons are known to be important for response selection, but the importance of the striatal GABAergic system for response inhibition processes remains elusive. Using a novel combination of behavior al, EEG and magnetic resonance spectroscopy (MRS) data, we examine the relevance of the striatal GABAergic system for response inhibition processes. The study shows that striatal GABA levels modulate the efficacy of response inhibition processes. Higher striatal GABA levels were related to better response inhibition performance. We show that striatal GABA modulate specific subprocesses of response inhibition related to pre-motor inhibitory processes through the modulation of neuronal synchronization processes. To our knowledge, this is the first study providing direct evidence for the relevance of the striatal GABAergic system for response inhibition functions and their cortical electrophysiological correlates in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adler A, Finkes I, Katabi S, Prut Y, Bergman H (2013) Encoding by synchronization in the primate striatum. J Neurosci 33:4854–4866

    Article  CAS  PubMed  Google Scholar 

  • Aron AR (2011) From reactive to proactive and selective control: developing a richer model for stopping inappropriate responses. Biol Psychiatry 69:e55–e68

    Article  PubMed Central  PubMed  Google Scholar 

  • Aron AR, Robbins TW, Poldrack RA (2004) Inhibition and the right inferior frontal cortex. Trends Cogn Sci 8:170–177

    Article  PubMed  Google Scholar 

  • Bar-Gad I, Morris G, Bergman H (2003) Information processing, dimensionality reduction and reinforcement learning in the basal ganglia. Prog Neurobiol 71:439–473

    Article  PubMed  Google Scholar 

  • Bari A, Robbins TW (2013) Inhibition and impulsivity: behavioural and neural basis of response control. Prog Neurobiol 108:44–79

    Article  PubMed  Google Scholar 

  • Beste C, Saft C (2014) Benign hereditary chorea as an experimental model to investigate the role of medium spiny neurons for response adaptation. Neuropsychologia 59:124–129

    Article  PubMed  Google Scholar 

  • Beste C, Dziobek I, Hielscher H, Willemssen R, Falkenstein M (2009) Effects of stimulus-response compatibility on inhibitory processes in Parkinson’s disease. Eur J Neurosci 29:855–860

    Article  PubMed  Google Scholar 

  • Beste C, Willemssen R, Saft C, Falkenstein M (2010) Response inhibition subprocesses and dopaminergic pathways: basal ganglia disease effects. Neuropsychologia 48:366–373

    Article  PubMed  Google Scholar 

  • Beste C, Ness V, Falkenstein M, Saft C (2011) On the role of fronto-striatal neural synchronization processes for response inhibition – evidence from ERP phase- synchronization analyses in pre-manifest Huntington’s disease gene mutation carriers. Neuropsychologia 49:3484–3493

    Article  PubMed  Google Scholar 

  • Beste C, Ness V, Lukas C, Hoffmann R, Stüwe S, Falkenstein M, Saft C (2012) Mechanisms mediating parallel action monitoring in fronto-striatal circuits. Neuroimage 62:137–146

    Article  PubMed  Google Scholar 

  • Beste C, Mückschel M, Elben S, Hartman CJ, McIntyre CC, Saft C, Vesper J, Schnitzler A, Wojtecki L (2014) Behavioral and neurophysiological evidence for the enhancement of cognitive control under dorsal pallidal deep brain stimulation in Huntington’s disease. Brain Struct Funct. doi:10.1007/s00429-014-0805-x

    Google Scholar 

  • Boehler CN, Appelbaum LG, Krebs RM, Hopf JM, Woldorff MG (2010) Pinning down response inhibition in the brain-conjunction analyses of the stop-signal task. NeuroImage 52:1621–1632

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boer VO, Siero JC, Hoogduin H, van Gorp JS, Luijten PR, Klomp DW (2011) High-field MRS of the human brain at short TE and TR. NMR Biomed 24:1081–1088

    Article  PubMed  Google Scholar 

  • Bolam JP, Hanley JJ, Booth PA, Bevan MD (2000) Synaptic organization of the basal ganglia. J Anat 196:527–542

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Caprioli A, Sawiak SJ, Merlo E, Theobald DEH, Spoelder M, Jupp B, Voon V, Carpenter A, Everitt BJ, Robbins TW, Dalley JW (2014) Gamma aminobutyric acidergic and neuronal structural markers in the nucleus accumbens core underlie trait-like impulsive behavior. Biol Psychiatry 75:115–123

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Choi IY, Lee SP, Merkle H, Shen J (2006) In vivo detection of gray and white matter differences in GABA concentration in the human brain. Neuroimage 33:85–93

    Article  PubMed  Google Scholar 

  • Chowdhury FA, O’Gorman RL, Nashef L, Elwes RD, Edden RA, Murdoch JB, Barker GJ, Richardson MP (2014) Investigation of glutamine and GABA levels in patients with idiopathic generalized epilepsy using MEGAPRESS. J Magn Reson Imaging. doi:10.1002/jmri.24611

    Google Scholar 

  • Duann JR, Ide JS, Luo X, Li CS (2009) Functional connectivity delineates distinct roles of the inferior frontal cortex and presupplementary motor area in stop signal inhibition. J Neurosci 29:10171–10179

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dydak U, Jiang YM, Long LL, Zhu H, Chen J, Li WM, Edden RA, Hu S, Fu X, Long Z, Mo XA, Meier D, Harezlak J, Aschner M, Murdoch JB, Zheng W (2011) In vivo measurement of brain GABA concentrations by magnetic resonance spectroscopy in smelters occupationally exposed to manganese. Environ Health Perspect 119:219–224

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Edden RAE, Barker PB (2007) Spatial effects in the detection of γ-aminobutyric acid: Im proved sensitivity at high fields using inner volume saturation. Magnc Reson Med 58:1276–1282

    Article  CAS  Google Scholar 

  • Epperson CN, Gueorguieva R, Czarkowski KA, Stiklus S, Sellers E, Krystal JH, Rothman DL, Mason GF (2006) Preliminary evidence of reduced occipital concentrations in puerperal women: a 1H-MRS study. Psychopharmacology 186:425–433

    Article  CAS  PubMed  Google Scholar 

  • Forstmann BU, Keuken MC, Jahfari S, Bazin PL, Neumann J, Schäfer A, Anwander A, Turner R (2012) Cortico-subthalamic white matter tract strength predicts interindividual efficacy in stopping a motor response. Neuroimage 60:370–375

    Article  PubMed  Google Scholar 

  • Harada M, Kubo H, Nose A, Nishitani H, Matsuda T (2011) Measurement of variation in the human cerebral GABA level by in vivo MEGA-editing proton MR spectroscopy using a clinical 3 T instrument and its dependence on brain region and the female menstrual cycle. Hum Brain Mapp 32:828–833

    Article  PubMed  Google Scholar 

  • Hester RL, Murphy K, Foxe JJ, Foxe DM, Javitt CD, Garavan H (2004) Predicting success: patterns of cortical activation and deactivation prior to response inhibition. J Cogn Neurosci 16:776–785

    Article  PubMed  Google Scholar 

  • Humphries MD, Wood R, Gurney K (2010) Reconstructing the three-dimensional GABAergic microcircuit of the striatum. Plos Comp Biol 6:e1001011

    Article  Google Scholar 

  • Huster RJ, Enriquez-Geppert S, Lavallee CF, Falkenstein M, Herrmann CS (2013) Electroencephalography or response inhibition tasks: functional networks and cognitive contributions. Int J Psychophysiol 87:217–233

    Article  PubMed  Google Scholar 

  • Isoda M, Hikosaka O (2007) Switching from automatic to controlled action by monkey medial frontal cortex. Nat Neurosci 10:240–248

    Article  CAS  PubMed  Google Scholar 

  • Kitano K, Fukai T (2007) Variability v.s. sychronicity of neuronal activity in local cortical network models with different wiring topologies. J Comput Neurosci 23:237–250

    Article  PubMed  Google Scholar 

  • Kolev V, Yordanova J (1997) Analysis of phase-locking is informative for studying event-related EEG activity. Biol Cybern 76:229–235

    Article  CAS  PubMed  Google Scholar 

  • Long Z, Murdoch JB, Xu J, Dydak U (2011) GABA Fitting for MEGA-PRESS Sequences with Different Selective Inversion Frequencies. Proc Intl Soc Mag Reson Med 19:1399

    Google Scholar 

  • Marjańska M, Lehéricy S, Valabrègue R, Popa T, Worbe Y, Russo M, Auerbach EJ, Grabli D, Bonnet C, Gallea C, Coudert M, Yahia-Cherif L, Vidailhet M, Meunier S (2013) Brain dynamic neurochemical changes in dystonic patients: a magnetic resonance spectroscopy study. Mov Disord 28:201–209

    Article  PubMed Central  PubMed  Google Scholar 

  • Mescher M, Merkle H, Kirsch J, Garwood M, Gruetter R (1998) Simultaneous in vivo spectral editing and water suppression. NMR Biomed 11:266–272

    Article  CAS  PubMed  Google Scholar 

  • Mostofsky SH, Schafer JG, Adrams MT, Goldberg MC, Flower AA, Boyce A, Courtney SM, Calhoun VD, Kraut MA, Denckla MB, Pekar JJ (2003) fMRI evidence that the neural basis of response inhibition is task-dependent. Brain Res Cogn Brain Res 17:419–430

    Article  PubMed  Google Scholar 

  • Murdoch JB, Dydak U (2011) Modeling MEGA-PRESS macromolecules for a better grasp of GABA. Proc Intl Soc Mag Reson Med 19:1394

    Google Scholar 

  • Nunez PL, Srinivasan R, Westdorp AF, Wijesinghe RS, Tucker DM, Silberstein RB, Cadusch PJ (1997) EEG coherency. I: statistics, reference electrode, volume conduction, laplacians, cortical imaging, and interpretation at multiple scales. Electroencephalogr Clin Neurophysiol 103:499–515

    Article  CAS  PubMed  Google Scholar 

  • Ocklenburg S, Güntürkün O, Beste C (2011) Lateralized neural mechanisms underlying the modulation of response inhibition processes. Neuroimage 55:1771–1778

    Article  PubMed  Google Scholar 

  • Perrin F, Pernier J, Bertrand O, Echallier JF (1989) Spherical splines for scalp potential and current densitiy mapping. Eletroencephalogr Clin Neurophysiol 72:184–187

    Article  CAS  Google Scholar 

  • Pivik RT, Broughton RJ, Coppola R, Davidson RJ, Fox N, Nuwer MR (1993) Guidelines for the recording and quantitative analysis of electroencephalographic activity in research contexts. Psychophysiology 30:547–558

    Article  CAS  PubMed  Google Scholar 

  • Pouwels PW, Frahm J (1998) Regional metabolite concentrations in human brain as determined by quantitative localized proton MRS. Magn Reson Med 39:53–60

    Article  CAS  PubMed  Google Scholar 

  • Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30:672–679

    Article  CAS  PubMed  Google Scholar 

  • Rae CD (2014) A guide to the metabolic pathways and function of metabolites observed in human brain 1 h magnetic resonance spectra. Neurochem Res 39:1–36

    Article  CAS  PubMed  Google Scholar 

  • Roach BJ, Mathalon DH (2008) Event-related EEG time-freqeuncy analysis: an overview of measures and an analysis of early gamma band phase locking in schizophrenia. Schizophr Bull 34:907–926

    Article  PubMed Central  PubMed  Google Scholar 

  • Rubia K, Russel T, Overmeyer S, Brammer MJ, Bullmore ET, Sharma T, Simmons A, Williams SC, Giampietro V, Andrew CM, Taylor E (2001) Mapping motor inhibition: conjunctive brain activations across different version of go/no-go and stop tasks. Neuroimage 13:250–261

    Article  CAS  PubMed  Google Scholar 

  • Silveri MM, Sneider JT, Crowley DJ, Covell MJ, Acharya D, Rosso IM, Jensen JE (2013) Frontal lobe γ–aminobutyric acid levels during adolescence: associations with impulsivity and response inhibition. Biol Psychiatry 74:296–304

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Swann N, Poizner H, Houser M, Gould S, Greenhouse I, Cai W, Strunk J, George J, Aron AR (2011) Deep brain stimulation of the subthalamic nucleus alters the cortical profile of response inhibition in the beta frequency band: a scalp EEG study in Parkinson’s disease. J Neurosci 31:5721–5729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tallon-Baudry C, Bertrand O, Fischer C (2001) Oscillatory synchrony between human extrastriate areas during visual short-term memory maintenance. J Neurosci 21:RC177

    CAS  PubMed  Google Scholar 

  • Tepper JM, Bolam JP (2004) Functional diversity and specificity of neostriatal interneurons. Curr Opin Neurobiol 14:685–692

    Article  CAS  PubMed  Google Scholar 

  • van den Wildenberg WP, van Boxtel GJ, van der Molen MW, Bosch DA, Speelman JD, Brunia CH (2006) Stimulation of the subthalamic region facilitates the selection and inhibition of motor responses in Parkinson’s disease. J Cogn Neurosci 18:626–636

    Article  PubMed  Google Scholar 

  • Van Schouwenburg MR, den Ouden HE, Cools R (2013) Selective attentional enhancement and inhibition of fronto-posterior connectivity by the basal ganglia during attention switching. Cereb Cortex [Epub ahead of print]

  • Willemssen R, Müller T, Schwarz M, Falkenstein M, Beste C (2009) Response monitoring in de novo patients with Parkinson’s disease. PloS One 4(3):e4898

    Article  PubMed Central  PubMed  Google Scholar 

  • Willemssen R, Falkenstein M, Schwarz M, Müller T, Beste C (2011) Effects of aging, Parkinson’s disease, and dopaminergic medication on response selection and control. Neurobiol Aging 32:327–335

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant from the Deutsche Forschungsgemeinschaft (DFG) BE4045/10-1 and 10-2. We thank Dr. Richard Edden for providing the GABA-editing MRS sequence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Beste.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quetscher, C., Yildiz, A., Dharmadhikari, S. et al. Striatal GABA-MRS predicts response inhibition performance and its cortical electrophysiological correlates. Brain Struct Funct 220, 3555–3564 (2015). https://doi.org/10.1007/s00429-014-0873-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-014-0873-y

Keywords

Navigation