Skip to main content

Advertisement

Log in

Glutamatergic phenotype of glucagon-like peptide 1 neurons in the caudal nucleus of the solitary tract in rats

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The expression of a vesicular glutamate transporter (VGLUT) suffices to assign a glutamatergic phenotype to neurons and other secretory cells. For example, intestinal L cells express VGLUT2 and secrete glutamate along with glucagon-like peptide 1 (GLP1). We hypothesized that GLP1-positive neurons within the caudal (visceral) nucleus of the solitary tract (cNST) also are glutamatergic. To test this, the axonal projections of GLP1 and other neurons within the cNST were labeled in rats via iontophoretic delivery of anterograde tracer. Dual immunofluorescence and confocal microscopy was used to visualize tracer-, GLP1-, and VGLUT2-positive fibers within brainstem, hypothalamic, and limbic forebrain nuclei that receive input from the cNST. Electron microscopy was used to confirm GLP1 and VGLUT2 immunolabeling within the same axon varicosities, and fluorescent in situ hybridization was used to examine VGLUT2 mRNA expression by GLP1-positive neurons. Most anterograde tracer-labeled fibers displayed VGLUT2-positive varicosities, providing new evidence that ascending axonal projections from the cNST are primarily glutamatergic. Virtually all GLP1-positive varicosities also were VGLUT2-positive. Electron microscopy confirmed the colocalization of GLP1 and VGLUT2 immunolabeling in axon terminals that formed asymmetric (excitatory-type) synapses with unlabeled dendrites in the hypothalamus. Finally, in situ hybridization confirmed that GLP1-positive cNST neurons express VGLUT2 mRNA. Thus, hindbrain GLP1 neurons in rats are equipped to store glutamate in synaptic vesicles, and likely co-release both glutamate and GLP1 from axon varicosities and terminals in the hypothalamus and other brain regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acuna-Goycolea C, van den Pol A (2004) Glucagon-like peptide 1 excites hypocretin/orexin neurons by direct and indirect mechanisms: implications for viscera-mediated arousal. J Neurosci 24(37):8141–8152. doi:10.1523/JNEUROSCI.1607-04.2004

    Article  CAS  PubMed  Google Scholar 

  • Crestani CC, Alves FH, Gomes FV, Resstel LB, Correa FM, Herman JP (2013) Mechanisms in the bed nucleus of the stria terminalis involved in control of autonomic and neuroendocrine functions: a review. Curr Neuropharmacol 11(2):141–159. doi:10.2174/1570159X11311020002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Donahey JC, van Dijk G, Woods SC, Seeley RJ (1998) Intraventricular GLP-1 reduces short- but not long-term food intake or body weight in lean and obese rats. Brain Res 779(1–2):75–83

    Article  CAS  PubMed  Google Scholar 

  • Doyle S, Pyndiah S, De Gois S, Erickson JD (2010) Excitation-transcription coupling via calcium/calmodulin-dependent protein kinase/ERK1/2 signaling mediates the coordinate induction of VGLUT2 and Narp triggered by a prolonged increase in glutamatergic synaptic activity. J Biol Chem 285(19):14366–14376. doi:10.1074/jbc.M109.080069

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • El Mestikawy S, Wallen-Mackenzie A, Fortin GM, Descarries L, Trudeau LE (2011) From glutamate co-release to vesicular synergy: vesicular glutamate transporters. Nat Rev Neurosci 12(4):204–216. doi:10.1038/nrn2969

    Article  PubMed  Google Scholar 

  • Flak JN, Ostrander MM, Tasker JG, Herman JP (2009) Chronic stress-induced neurotransmitter plasticity in the PVN. J Comp Neurol 517(2):156–165. doi:10.1002/cne.22142

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fremeau RT Jr, Troyer MD, Pahner I, Nygaard GO, Tran CH, Reimer RJ, Bellocchio EE, Fortin D, Storm-Mathisen J, Edwards RH (2001) The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron 31(2):247–260

    Article  CAS  PubMed  Google Scholar 

  • Griffin GD, Ferri-Kolwicz SL, Reyes BA, Van Bockstaele EJ, Flanagan-Cato LM (2010) Ovarian hormone-induced reorganization of oxytocin-labeled dendrites and synapses lateral to the hypothalamic ventromedial nucleus in female rats. J Comp Neurol 518(22):4531–4545. doi:10.1002/cne.22470

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gulpinar MA, Bozkurt A, Coskun T, Ulusoy NB, Yegen BC (2000) Glucagon-like peptide (GLP-1) is involved in the central modulation of fecal output in rats. Am J Physiol Gastrointest Liver Physiol 278:G924–G929

    CAS  PubMed  Google Scholar 

  • Han VK, Hynes MA, Jin C, Towle AC, Lauder JM, Lund PK (1986) Cellular localization of proglucagon/glucagon-like peptide I messenger RNAs in rat brain. J Neurosci Res 16(1):97–107. doi:10.1002/jnr.490160110

    Article  CAS  PubMed  Google Scholar 

  • Hayashi M, Morimoto R, Yamamoto A, Moriyama Y (2003) Expression and localization of vesicular glutamate transporters in pancreatic islets, upper gastrointestinal tract, and testis. J Histochem Cytochem 51(10):1375–1390

    Article  CAS  PubMed  Google Scholar 

  • Hayes MR (2012) Neuronal and intracellular signaling pathways mediating GLP-1 energy balance and glycemic effects. Physiol Behav 106(3):413–416. doi:10.1016/j.physbeh.2012.02.017

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Herzog E, Gilchrist J, Gras C, Muzerelle A, Ravassard P, Giros B, Gaspar P, El Mestikawy S (2004) Localization of VGLUT3, the vesicular glutamate transporter type 3, in the rat brain. Neuroscience 123(4):983–1002

    Article  CAS  PubMed  Google Scholar 

  • Johnson J, Sherry DM, Liu X, Fremeau RT Jr, Seal RP, Edwards RH, Copenhagen DR (2004) Vesicular glutamate transporter 3 expression identifies glutamatergic amacrine cells in the rodent retina. J Comp Neurol 477(4):386–398. doi:10.1002/cne.20250

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kaneko T, Fujiyama F, Hioki H (2002) Immunohistochemical localization of candidates for vesicular glutamate transporters in the rat brain. J Comp Neurol 444(1):39–62

    Article  CAS  PubMed  Google Scholar 

  • Kinzig KP, D’Alessio DA, Herman JP, Sakai RR, Vahl TP, Figueiredo HF, Murphy EK, Seeley RJ (2003) CNS glucagon-like peptide-1 receptors mediate endocrine and anxiety responses to interoceptive and psychogenic stressors. J Neurosci 23(15):6163–6170

    CAS  PubMed  Google Scholar 

  • Larsen PJ, Tang-Christensen M, Holst JJ, Orskov C (1997a) Distribution of glucagon-like peptide-1 and other preproglucagon-derived peptides in rat hypothalamus and brainstem. Neuroscience 77(1):257–270

    Article  CAS  PubMed  Google Scholar 

  • Larsen PJ, Tang-Christensen M, Jessop DS (1997b) Central administration of glucagon-like peptide-1 activates hypothalamic neuroendocrine neurons in the rat. Endocrinology 138(10):4445–4455

    CAS  PubMed  Google Scholar 

  • Liguz-Lecznar M, Skangiel-Kramska J (2007) Vesicular glutamate transporters (VGLUTs): the three musketeers of glutamatergic system. Acta Neurobiol Exp (Wars) 67(3):207–218

    Google Scholar 

  • Maniscalco JW, Kreisler AD, Rinaman L (2012) Satiation and stress-induced hypophagia: examining the role of hindbrain neurons expressing prolactin-releasing peptide or glucagon-like peptide 1. Front Neurosci 6:199. doi:10.3389/fnins.2012.00199

    PubMed Central  PubMed  Google Scholar 

  • Meeran K, O’Shea D, Edwards CMB, Turton MD, Heath MM, Gunn I, Abusnana S, Rossi M, Small CJ, Goldstone AP, Taylor GM, Sunter D, Steere J, Choi SJ, Ghatei MA, Bloom SR (1999) Repeated intracerebroventricular administration of glucagon-like peptide-1-(7-26) amide or exendin-(9-39) alters body weight in the rat. Endocrinology 140(1):244–250

    CAS  PubMed  Google Scholar 

  • Merchenthaler I, Lane M, Shughrue P (1999) Distribution of pre-pro-glucagon and glucagon-like peptide-1 receptor messenger RNAs in the rat central nervous system. J Comp Neurol 403(2):261–280

    Article  CAS  PubMed  Google Scholar 

  • Mietlicki-Baase EG, Ortinski PI, Rupprecht LE, Olivos DR, Alhadeff AL, Pierce RC, Hayes MR (2013) The food intake-suppressive effects of glucagon-like peptide-1 receptor signaling in the ventral tegmental area are mediated by AMPA/kainate receptors. Am J Physiol Endocrinol Metab 305(11):E1367–E1374. doi:10.1152/ajpendo.00413.2013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moller C, Sommer W, Thorsell A, Rimondini R, Heilig M (2002) Anxiogenic-like action of centrally administered glucagon-like peptide-1 in a punished drinking test. Prog Neuropsychopharmacol Bol Psychiatry 26(1):119–122

    Article  CAS  Google Scholar 

  • Moriyama Y, Yamamoto A (2004) Glutamatergic chemical transmission: look! Here, there, and anywhere. J Biochem 135(2):155–163

    Article  CAS  PubMed  Google Scholar 

  • Myers B, Mark Dolgas C, Kasckow J, Cullinan WE, Herman JP (2013) Central stress-integrative circuits: forebrain glutamatergic and GABAergic projections to the dorsomedial hypothalamus, medial preoptic area, and bed nucleus of the stria terminalis. Brain Struct Funct. doi:10.1007/s00429-013-0566-y

    PubMed Central  Google Scholar 

  • Nakade Y, Tsukamoto K, Pappas TN, Takahashi T (2006) Central glucagon-like peptide 1 delays solid gastric emptying via central CRF and peripheral sympathetic pathways in rats. Brain Res 1111:117–121

    Article  CAS  PubMed  Google Scholar 

  • Nakade Y, Tsukamoto K, Iwa M, Pappas TN, Takahashi T (2007) Glucagon-like peptide 1 accelerates colonic transit via central CRF and peripheral vagal pathways in conscious rats. Auton Neurosci 131(1–2):50–56

    Article  CAS  PubMed  Google Scholar 

  • Noh J, Seal RP, Garver JA, Edwards RH, Kandler K (2010) Glutamate co-release at GABA/glycinergic synapses is crucial for the refinement of an inhibitory map. Nat Neurosci 13(2):232–238. doi:10.1038/nn.2478

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • O’Shea D, Gunn I, Chen X, Bloom S, Herbert J (1996) A role for central glucagon-like peptide-1 in temperature regulation. Neuroreport 7:830–832

    Article  PubMed  Google Scholar 

  • Reimer R, Edwards R (2004) Organic anion transport is the primary function of the SLC17/type I phosphate transporter family. Pflugers Arch Gesamte Physiol Menschen Tiere 447(5):629–635

    Article  CAS  Google Scholar 

  • Riediger T, Eisele N, Scheel C, Lutz TA (2010) Effects of glucagon-like peptide 1 and oxyntomodulin on neuronal activity of ghrelin-sensitive neurons in the hypothalamic arcuate nucleus. Am J Physiol Regul Integr Comp Physiol 298(4):R1061–R1067. doi:10.1152/ajpregu.00438.2009

    Article  CAS  PubMed  Google Scholar 

  • Rinaman L (1999a) A functional role for central glucagon-like peptide-1 receptors in lithium chloride-induced anorexia. Am J Physiol 277:R1537–R1540

    CAS  PubMed  Google Scholar 

  • Rinaman L (1999b) Interoceptive stress activates glucagon-like peptide-1 neurons that project to the hypothalamus. Am J Physiol 277:R582–R590

    CAS  PubMed  Google Scholar 

  • Rinaman L (2010) Ascending projections from the caudal visceral nucleus of the solitary tract to brain regions involved in food intake and energy expenditure. Brain Res 1350:18–34

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rinaman L (2011) Hindbrain noradrenergic A2 neurons: diverse roles in autonomic, endocrine, cognitive, and behavioral functions. Am J Physiol Regul Integr Comp Physiol 300(2):R222–R235. doi:10.1152/ajpregu.00556.2010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rinaman L, Comer J (2000) Antagonism of central glucagon-like peptide-1 receptors enhances lipopolysaccharide-induced fever. Auton Neurosci Basic Clin 85:98–101

    Article  CAS  Google Scholar 

  • Sandoval DA, Bagnol D, Woods SC, D’Alessio DA, Seeley RJ (2008) Arcuate glucagon-like peptide 1 receptors regulate glucose homeostasis but not food intake. Diabetes 57:2046–2054

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sarkar S, Fekete C, Legradi G, Lechan RM (2003) Glucagon-like peptide-1 (7-36) amide (GLP-1) nerve terminals densely innervate corticotropin-releasing hormone neurons in the hypothalamic paraventricular nucleus. Brain Res 985:163–168

    Article  CAS  PubMed  Google Scholar 

  • Sawchenko PE, Swanson LW (1982) The organization of noradrenergic pathways from the brainstem to the paraventricular and supraoptic nuclei in the rat. Brain Res Rev 4:275–325

    Article  Google Scholar 

  • Schafer MK, Varoqui H, Defamie N, Weihe E, Erickson JD (2002) Molecular cloning and functional identification of mouse vesicular glutamate transporter 3 and its expression in subsets of novel excitatory neurons. J Biol Chem 277(52):50734–50748. doi:10.1074/jbc.M206738200

    Article  PubMed  Google Scholar 

  • Schick RR, Zimmermann JP, Walde TV, Schusdziarra V (2003) Glucagon-like peptide 1-(7-36) amide acts at lateral and medial hypothalamic sites to suppress feeding in rats. Am J Physiol Regul Integr Comp Physiol 284:R1427–R1435

    Article  CAS  PubMed  Google Scholar 

  • Schone C, Burdakov D (2012) Glutamate and GABA as rapid effectors of hypothalamic “peptidergic” neurons. Front Behav Neurosci 6:81. doi:10.3389/fnbeh.2012.00081

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Seeley RJ, Blake K, Rushing PA, Benoit S, Eng J, Woods SC, D’Alessio D (2000) The role of CNS glucagon-like peptide-1 (7-36) amide receptors in mediating the visceral illness effects of lithium chloride. J Neurosci 20(4):1616–1621

    CAS  PubMed  Google Scholar 

  • Stornetta RL, Sevigny CP, Guyenet PG (2002a) Vesicular glutamate transporter DNPI/VGLUT2 mRNA is present in C1 and several other groups of brainstem catecholaminergic neurons. J Comp Neurol 444(3):191–206

    Article  CAS  PubMed  Google Scholar 

  • Stornetta RL, Sevigny CP, Schreihofer AM, Rosin DL, Guyenet PG (2002b) Vesicular glutamate transporter DNPI/VGLUT2 is expressed by both C1 adrenergic and nonaminergic presympathetic vasomotor neurons of the rat medulla. J Comp Neurol 444:207–220

    Article  CAS  PubMed  Google Scholar 

  • Tang-Christensen M, Vrang N, Larsen PJ (2001) Glucagon-like peptide containing pathways in the regulation of feeding behaviour. Int J Obes 25(suppl 5):S42–S47

    Article  CAS  Google Scholar 

  • Thiele TE, Seeley RJ, D’Alessio D, Eng J, Bernstein IL, Woods SC, van Dijk G (1998) Central infusion of glucagon-like peptide-1-(7-36) amide (GLP-1) receptor antagonist attenuates lithium chloride-induced c-Fos induction in rat brainstem. Brain Res 801(1–2):164–170

    Article  CAS  PubMed  Google Scholar 

  • Todd AJ, Hughes DI, Polgar E, Nagy GG, Mackie M, Ottersen OP, Maxwell DJ (2003) The expression of vesicular glutamate transporters VGLUT1 and VGLUT2 in neurochemically defined axonal populations in the rat spinal cord with emphasis on the dorsal horn. Eur J Neurosci 17(1):13–27

    Article  CAS  PubMed  Google Scholar 

  • Turton MD, O’Shea D, Gunn I, Beak SA, Edwards CM, Meeran K, Choi SJ, Taylor GM, Heath MM, Lambert PD, Wilding JP, Smith DM, Ghatei MA, Herbert J, Bloom SR (1996) A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 379(6560):69–72

    Article  CAS  PubMed  Google Scholar 

  • Uehara S, Jung SK, Morimoto R, Arioka S, Miyaji T, Juge N, Hiasa M, Shimizu K, Ishimura A, Otsuka M, Yamamoto A, Maechler P, Moriyama Y (2006) Vesicular storage and secretion of l-glutamate from glucagon-like peptide 1-secreting clonal intestinal L cells. J Neurochem 96(2):550–560. doi:10.1111/j.1471-4159.2005.03575.x

    Article  CAS  PubMed  Google Scholar 

  • Ulrich-Lai YM, Jones KR, Ziegler DR, Cullinan WE, Herman JP (2011) Forebrain origins of glutamatergic innervation to the rat paraventricular nucleus of the hypothalamus: differential inputs to the anterior versus posterior subregions. J Comp Neurol 519(7):1301–1319. doi:10.1002/cne.22571

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • van Dijk G, Thiele TE (1999) Glucagon-like peptide-1 (7-36) amide: a central regulator of satiety and interoceptive stress. Neuropeptides 33(3):406–414

    CAS  Google Scholar 

  • Varoqui H, Schafer MK, Zhu H, Weihe E, Erickson JD (2002) Identification of the differentiation-associated Na +/PI transporter as a novel vesicular glutamate transporter expressed in a distinct set of glutamatergic synapses. J Neurosci 22(1):142–155

    CAS  PubMed  Google Scholar 

  • Vrang N, Grove K (2011) The brainstem preproglucagon system in a non-human primate (Macaca mulatta). Brain Res 1397:28–37. doi:10.1016/j.brainres.2011.05.002

    Article  CAS  PubMed  Google Scholar 

  • Vrang N, Phifer CB, Corkern MM, Berthoud HR (2003) Gastric distension induces c-Fos in medullary GLP-1/2-containing neurons. Am J Physiol Regul Integr Comp Physiol 285(2):R470–R478. doi:10.1152/ajpregu.00732.2002

    Article  CAS  PubMed  Google Scholar 

  • Vrang N, Hansen M, Larsen PJ, Tang-Christensen M (2007) Characterization of brainstem preproglucagon projections to the paraventricular and dorsomedial hypothalamic nuclei. Brain Res 1149:118–126

    Article  CAS  PubMed  Google Scholar 

  • Wan S, Browning KN, Travagli RA (2007) Glucagon-like peptide-1 modulates synaptic transmission to identified pancreas-projecting vagal motoneurons. Peptides 28(11):2184–2191

    Article  CAS  PubMed  Google Scholar 

  • Weston M, Wang H, Stornetta RL, Sevigny CP, Guyenet PG (2003) Fos expression by glutamatergic neurons of the solitary tract nucleus after phenylephrine-induced hypertension in rats. J Comp Neurol 460(4):525–541. doi:10.1002/cne.10663

    Article  PubMed  Google Scholar 

  • Zheng H, Cai L, Rinaman L (2014) Distribution of glucagon-like peptide 1-immunopositive neurons in human caudal medulla. Brain Struct Funct. doi:10.1007/s00429-014-0714-z

    Google Scholar 

  • Ziegler DR, Cullinan WE, Herman JP (2002) Distribution of vesicular glutamate transporter mRNA in rat hypothalamus. J Comp Neurol 448(3):217–229. doi:10.1002/cne.10257

    Article  CAS  PubMed  Google Scholar 

  • Ziegler DR, Cullinan WE, Herman JP (2005) Organization and regulation of paraventricular nucleus glutamate signaling systems: N-methyl-d-aspartate receptors. J Comp Neurol 484(1):43–56. doi:10.1002/cne.20445

    Article  CAS  PubMed  Google Scholar 

  • Ziegler DR, Edwards MR, Ulrich-Lai YM, Herman JP, Cullinan WE (2012) Brainstem origins of glutamatergic innervation of the rat hypothalamic paraventricular nucleus. J Comp Neurol 520(11):2369–2394. doi:10.1002/cne.23043

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda Rinaman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, H., Stornetta, R.L., Agassandian, K. et al. Glutamatergic phenotype of glucagon-like peptide 1 neurons in the caudal nucleus of the solitary tract in rats. Brain Struct Funct 220, 3011–3022 (2015). https://doi.org/10.1007/s00429-014-0841-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-014-0841-6

Keywords

Navigation