Skip to main content
Log in

Altered glutamate/GABA equilibrium in aged mice cortex influences cortical plasticity

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Age-related molecular changes in the synapse can cause plasticity decline. We found an impairment of experience-dependent cortical plasticity is induced by short lasting sensory conditioning in aged mice. However, extending the training procedure from 3 to 7 days triggered plasticity in the aged cortex of the same range as in young mice. Additionally, GABAergic markers (GABA, GAD67, VGAT) in young and aged groups that showed the plastic changes were upregulated. This effect was absent in the aged group with impaired plasticity, while the expression of Vglut1 increased in all trained groups. This may reflect the inefficiency of inhibitory mechanisms in the aging brain used to control increased excitation after training and to shape proper signal to noise ratio, which is essential for appropriate stimuli processing. HPLC analysis showed that the glutamate/GABA ratio was significantly reduced in aged animals due to a significant decrease in glutamate level. We also observed a decreased expression of several presynaptic markers involved in excitatory (vesicular glutamate transporter-vglut2) and inhibitory (glutamic acid decarboxylase-GAD67, vesicular GABA transporter VGAT) transmission in the aged barrel cortex. These changes may weaken the plasticity potential of neurons and impede the experience-dependent reorganization of cortical connections. We suggest that the imbalance toward inhibition resulting from a decrease of glutamate content in the aging cerebral cortex, together with GABAergic system ineffectiveness in upregulating GABA level after sensory training, contributes to the impairment of learning-dependent cortical plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akopian G, Walsh JP (2006) Pre- and postsynaptic contributions to age-related alterations in corticostriatal synaptic plasticity. Synapse 60:223–238

    Article  CAS  PubMed  Google Scholar 

  • Benali A, Weiler E, Benali Y, Dinse HR, Eysel UT (2008) Excitation and inhibition jointly regulate cortical reorganization in adult rats. J Neurosci 28(47):12284–12293

    Article  CAS  PubMed  Google Scholar 

  • Burianova J, Ouda L, Profant O, Syka J (2009) Age-related changes in GAD levels in the central auditory system of the rat. Exp Gerontol 44:161–169

    Article  CAS  PubMed  Google Scholar 

  • Burke SN, Barnes CA (2006) Neural plasticity in the ageing brain. Nat Rev Neurosci 7:30–40

    Article  CAS  PubMed  Google Scholar 

  • Canas PM, Duarte JM, Rodrigues RJ, Kofalvi A, Cunha RA (2009) Modification upon aging of the density of presynaptic modulation systems in the hippocampus. Neurobiol Aging 30:1877–1884

    Article  CAS  PubMed  Google Scholar 

  • Cheetham CE, Hammond MS, Edwards CE, Finnerty GT (2007) Sensory experience alters cortical connectivity and synaptic function site specifically. J Neurosci 27:3456–3465

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen ZJ, He Y, Rosa-Neto P, Gong G, Evans AC (2011) Age-related alterations in the modular organization of structural cortical network by using cortical thickness from MRI. Neuroimage 56:235–245

    Article  PubMed  Google Scholar 

  • Cheng XR, Yang Y, Zhou WX, Zhang YX (2011) Expression of VGLUTs contributes to degeneration and acquisition of learning and memory. Neurobiol Learn Mem 3:361–375

    Article  Google Scholar 

  • David-Jurgens M, Churs L, Berkefeld T, Zepka RF, Dinse HR (2008) Differential effects of aging on fore- and hindpaw maps of rat somatosensory cortex. PLoS One 3:e3399

    Article  PubMed Central  PubMed  Google Scholar 

  • De Gois S, Shäfer MK-H, Defamie N, Chen CH, Ricci A, Weihe E, Varoqui H, Erickson JD (2005) Homeostatic scaling of vesicular glutamate and GABA transporter expression in rat neocortical circuits. J Neurosci 25:7121–7133

    Article  PubMed  Google Scholar 

  • Driscoll I, Howard SR, Stone JC, Monfils MH, Tomanek B, Brooks WM, Sutherland RJ (2006) The aging hippocampus: a multi-level analysis in the rat. Neuroscience 139:1173–1185

    Article  CAS  PubMed  Google Scholar 

  • Dubroff JG, Stevens RT, Hitt J, Maier DL, McCasland JS, Hodge CJ (2005) Use-dependent plasticity in barrel cortex: intrinsic signal imaging reveals functional expansion of spared whisker representation into adjacent deprived columns. Somatosens Mot Res 22:25–35

    Article  CAS  PubMed  Google Scholar 

  • Foster TC, Barnes CA, Rao G, McNaughton BL (1991) Increase in perforant path quantal size in aged F-344 rats. Neurobiol Aging 12:441–448

    Article  CAS  PubMed  Google Scholar 

  • Gao F, Edden RA, Li M, Puts NA, Wang G, Liu C, Zhao B, Wang H, Bai X, Zhao C, Wang X, Barker PB (2013) Edited magnetic resonance spectroscopy detects an age-related decline in brain GABA levels. Neuroimage 78:75–82

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gierdalski M, Jablonska B, Siucinska E, Lech M, Skibinska A, Kossut M (2001) Rapid regulation of GAD67 mRNA and protein level in cortical neurons after sensory learning. Cereb Cortex 11:806–815

    Article  CAS  PubMed  Google Scholar 

  • Godde B, Berkefeld T, David-Jurgens M, Dinse HR (2002) Age-related changes in primary somatosensory cortex of rats: evidence for parallel degenerative and plastic-adaptive processes. Neurosci Biobehav Rev 26:743–752

    Article  PubMed  Google Scholar 

  • Goto N, Yoshimura R, Moriya J, Kakeda S, Hayashi K, Ueda N, Ikenouchi-Sugita A, Umene-Nakano W, Oonari N, Korogi Y, Nakamura J (2010) Critical examination of a correlation between brain gamma-aminobutyric acid (GABA) concentrations and a personality trait of extroversion in healthy volunteers as measured by a 3 Tesla proton magnetic resonance spectroscopy study. Psychiatry Res 182:53–57

    Article  CAS  PubMed  Google Scholar 

  • Hickmott P, Dinse H (2012) Effects of aging on properties of the local circuit in rat primary somatosensory cortex (S1) in vitro. Cereb Cortex. doi:10.1093/cercor/bhs248

    PubMed  Google Scholar 

  • Hof PR, Morrison JH (2004) The aging brain: morphomolecular senescence of cortical circuits. Trends Neurosci 27:607–613

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa T, Sahara Y, Takahashi T (2002) A single packet of transmitter does not saturate postsynaptic glutamate receptors. Neuron 34:613–621

    Article  CAS  PubMed  Google Scholar 

  • Itzev D, Lolova I, Lolov S, Usunoff KG (2001) Age-related changes in the synapses of the rat’s neostriatum. Arch Physiol Biochem 109:80–89

    Article  CAS  PubMed  Google Scholar 

  • Jasinska M, Siucinska E, Cybulska-Klosowicz A, Pyza E, Furness DN, Kossut M (2010) Rapid, learning-induced inhibitory synaptogenesis in murine barrel field. J Neurosci 30:1176–1184

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kumar A, Foster TC (2007) Neurophysiology of old neurons and synapses. In: Riddle DR (ed) Brain aging: models, methods, and mechanisms, Chap 10. CRC Press, Boca Raton

    Google Scholar 

  • Lau CG, Murthy VN (2012) Activity-dependent regulation of inhibition via GAD67. J Neurosci 32:8521–8531

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lehmann K, Schmidt KF, Löwel S (2012) Vision and visual plasticity in ageing mice. Restor Neurol Neurosci 30:161–178

    PubMed  Google Scholar 

  • Liguz-Lecznar M, Siucinska E, Zakrzewska R, Kossut M (2011) Impairment of experience-dependent cortical plasticity in aged mice. Neurobiol Aging 32:1896–1905

    Article  PubMed  Google Scholar 

  • Luebke JI, Chang YM, Moore TL, Rosene DL (2004) Normal aging results in decreased synaptic excitation and increased synaptic inhibition of layer 2/3 pyramidal cells in the monkey prefrontal cortex. Neuroscience 125:277–288

    Article  CAS  PubMed  Google Scholar 

  • Magnusson KR, Cotman CW (1993) Age-related changes in excitatory amino acid receptors in two mouse strains. Neurobiol Aging 14:197–206

    Article  CAS  PubMed  Google Scholar 

  • Majdi M, Ribeiro-da-Silva A, Cuello AC (2007) Cognitive impairment and transmitter-specific pre- and postsynaptic changes in the rat cerebral cortex during ageing. Eur J Neurosci 26:3583–3596

    Article  PubMed  Google Scholar 

  • Marczynski TJ (1998) GABAergic deafferentation hypothesis of brain aging and Alzheimer’s disease revisited. Brain Res Bull 45:341–379

    Article  CAS  PubMed  Google Scholar 

  • Moechars D, Weston MC, Leo S, Callaerts-Vegh Z, Goris I, Daneels G, Buist A, Cik M, van der Spek P, Kass S, Meert T, D’Hooge R, Rosenmund C, Hampson RM (2006) Vesicular glutamate transporter VGLUT2 expression levels control quantal size and neuropathic pain. J Neurosci 26:12055–12066

    Article  CAS  PubMed  Google Scholar 

  • Navone F, Jahn R, Di Gioia G, Stukenbrok H, Greengard P, De Camilli P (1986) Protein p38: an integral membrane protein specific for small vesicles of neurons and neuroendocrine cells. J Cell Biol 103:2511–2527

    Article  CAS  PubMed  Google Scholar 

  • Paullus JR, Hickmott PW (2011) Diverse excitatory and inhibitory synaptic plasticity outcomes in complex horizontal circuits near a functional border of adult neocortex. Brain Res 1416:10–25

    Article  CAS  PubMed  Google Scholar 

  • Peinemann A, Lehner C, Conrad B, Siebner HR (2001) Age-related decrease in paired-pulse intracortical inhibition in the human primary motor cortex. Neurosci Lett 313:33–36

    Article  CAS  PubMed  Google Scholar 

  • Pellicciari MC, Miniussi C, Rossini PM, De Gennaro L (2009) Increased cortical plasticity in the elderly: changes in the somatosensory cortex after paired associative stimulation. Neuroscience 163:266–276

    Article  CAS  PubMed  Google Scholar 

  • Poe BH, Linville C, Brunso-Bechtold J (2001) Age-related decline of presumptive inhibitory synapses in the sensorimotor cortex as revealed by the physical disector. J Comp Neurol 439:65–72

    Article  CAS  PubMed  Google Scholar 

  • Rosenzweig ES, Barnes CA (2003) Impact of aging on hippocampal function: plasticity, network dynamics, and cognition. Prog Neurobiol 69:143–179

    Article  CAS  PubMed  Google Scholar 

  • Rosenzweig ES, Rao G, McNaughton BL, Barnes CA (1997) Role of temporal summation in age-related long-term potentiation-induction deficits. Hippocampus 7:549–558

    Article  CAS  PubMed  Google Scholar 

  • Rowley HL, Martin KF, Marsden CA (1995) Determination of in vivo amino acid neurotransmitters by high-performance liquid chromatography with o-phthalaldehyde-sulphite derivatisation. J Neurosci Methods 57:93–99

    Article  CAS  PubMed  Google Scholar 

  • Ruano D, Araujo F, Revilla E, Vela J, Bergis O, Vitorica J (2000) GABAA and alpha-amino-3-hydroxy-5-methylsoxazole-4-propionate receptors are differentially affected by aging in the rat hippocampus. J Biol Chem 275:19585–19593

    Article  CAS  PubMed  Google Scholar 

  • Sametsky EA, Disterhoft JF, Geinisman Y, Nicholson DA (2010) Synaptic strength and postsynaptically silent synapses through advanced aging in rat hippocampal CA1 pyramidal neurons. Neurobiol Aging 31:813–825

    Article  PubMed Central  PubMed  Google Scholar 

  • Saransaari P, Oja SS (1995) Age-related changes in the uptake and release of glutamate and aspartate in the mouse brain. Mech Ageing Dev 81:61–71

    Article  CAS  PubMed  Google Scholar 

  • Segovia G, Mora F (2005) Effects of the metabotropic glutamate receptor agonist, ACPD, on the extracellular concentrations of GABA and acetylcholine in the prefrontal cortex of the rat during the normal process of aging. Brain Res Bull 65:11–16

    Article  CAS  PubMed  Google Scholar 

  • Segovia G, Porras A, Del Arco A, Mora F (2001) Glutamatergic neurotransmission in aging: a critical perspective. Mech Ageing Dev 122:1–29

    Article  CAS  PubMed  Google Scholar 

  • Siucinska E, Kossut M (1996) Short-lasting classical conditioning induces reversible changes of representational maps of vibrissae in mouse SI cortex–a 2DG study. Cereb Cortex 6:506–513

    Article  CAS  PubMed  Google Scholar 

  • Siucinska E, Kossut M, Stewart MG (1999) GABA immunoreactivity in mouse barrel field after aversive and appetitive classical conditioning training involving facial vibrissae. Brain Res 843:62–70

    Article  CAS  PubMed  Google Scholar 

  • Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28:897–916

    Article  CAS  PubMed  Google Scholar 

  • Stanley EM, Fadel JR, Mott DD (2012) Interneuron loss reduces dendritic inhibition and GABA release in hippocampus of aged rats. Neurobiol Aging 33:e1–e13

    Article  PubMed  Google Scholar 

  • Strominger RN, Woolsey TA (1987) Templates for locating the whisker area in fresh flattened mouse and rat cortex. J Neurosci Methods 22:113–118

    Article  CAS  PubMed  Google Scholar 

  • Tokarski K, Urban-Ciecko J, Kossut M, Hess G (2007) Sensory learning-induced enhancement of inhibitory synaptic transmission in the barrel cortex of the mouse. Eur J Neurosci 26:134–141

    Article  PubMed  Google Scholar 

  • Wallen-Mackenzie A, Wootz H, Englund H (2010) Genetic inactivation of the vesicular glutamate transporter 2 (VGLUT2) in the mouse: what have we learnt about functional glutamatergic neurotransmission? Ups J Med Sci 115:11–20

    Article  PubMed Central  PubMed  Google Scholar 

  • Wen JA, DeBlois MC, Barth AL (2013) Initiation, labile, and stabilization phases of experience-dependent plasticity at neocortical synapses. J Neurosci 33:8483–8493

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wilson NR, Kang J, Hueske EV, Leung T, Varoqui H, Murnick JG, Erickson JD, Liu G (2005) Presynaptic regulation of quantal size by the vesicular glutamate transporter VGLUT1. J Neurosci 25:6221–6234

    Article  CAS  PubMed  Google Scholar 

  • Wong TP, Marchese G, Casu MA, Ribeiro-da-Silva A, Cuello AC, De Koninck Y (2000) Loss of presynaptic and postsynaptic structures is accompanied by compensatory increase in action potential-dependent synaptic input to layer V neocortical pyramidal neurons in aged rats. J Neurosci 20:8596–8606

    CAS  PubMed  Google Scholar 

  • Wong TP, Marchese G, Casu MA, Ribeiro-da-Silva A, Cuello AC, De Koninck Y (2006) Imbalance towards inhibition as a substrate of aging-associated cognitive impairment. Neurosci Lett 397:64–68

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by statutable funds of Nencki Institute of Experimental Biology and by Ministry of Science and Education Grant No: NN301248639.

Conflict of interest

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Liguz-Lecznar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liguz-Lecznar, M., Lehner, M., Kaliszewska, A. et al. Altered glutamate/GABA equilibrium in aged mice cortex influences cortical plasticity. Brain Struct Funct 220, 1681–1693 (2015). https://doi.org/10.1007/s00429-014-0752-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-014-0752-6

Keywords

Navigation