Skip to main content

Advertisement

Log in

Molecular genetic and immunotherapeutic targets in metastatic melanoma

  • Invited Annual Review Issue
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

In recent years, melanoma treatment has radically changed with the emergence of targeted therapies and immunotherapies. Both have led to improved survival for patients with advanced or unresectable melanoma. Targeted therapies with BRAF inhibitors in the lead use the presence of activating driver mutations to inhibit tumour growth. Forty to 60% of melanomas harbour BRAF mutations, which makes them susceptible to treatment with BRAF and/or MEK inhibitors. In parallel, the development of immunotherapeutic agents has also expanded. These agents stimulate the endogenous immune system of the patient to eradicate cancer cells. Immune checkpoint inhibitors targeting cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) and programmed death 1 (PD-1) resulted in durable responses in a subset of patients. An important issue with immunotherapy lies in the identification of patients who will benefit from treatment. In this review, we will discuss these recent developments in melanoma therapy and highlight the role of the pathologist in both types of treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Reference

  1. Margolin K (2016) The promise of molecularly targeted and immunotherapy for advanced melanoma. Curr Treat Options in Oncol 17:48. doi:10.1007/s11864-016-0421-5

    Article  Google Scholar 

  2. Garbe C, Eigentler TK, Keilholz U, Hauschild A, Kirkwood JM (2011) Systematic review of medical treatment in melanoma: current status and future prospects. Oncologist 16:5–24. doi:10.1634/theoncologist.2010-0190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Teixido C, Gonzalez-Cao M, Karachaliou N, Rosell R (2015) Predictive factors for immunotherapy in melanoma. Ann Transl Med 3:208. doi:10.3978/j.issn.2305-5839.2015.05.07

    PubMed  PubMed Central  Google Scholar 

  4. Bastian BC (2014) The molecular pathology of melanoma: an integrated taxonomy of melanocytic neoplasia. Annu Rev Pathol Mech Dis 9:239–271. doi:10.1146/annurev-pathol-012513-104658

    Article  CAS  Google Scholar 

  5. Cancer Genome Atlas Network (2015) Genomic classification of cutaneous melanoma. Cell 161:1681–1696. doi:10.1016/j.cell.2015.05.044

    Article  Google Scholar 

  6. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA Jr, Behjati S, Biankin AV, Bignell GR, Bolli N, Borg A, Børresen-Dale A-L, Boyault S, Burkhardt B, Butler AP, Caldas C, Davies HR, Desmedt C, Eils R, Eyfjörd JE, Foekens JA, Greaves M, Hosoda F, Hutter B, Ilicic T, Imbeaud S, Imielinsk M, Jäger N, Jones DTW, Jones D, Knappskog S, Kool M, Lakhani SR, López-Otín C, Martin S, Munshi NC, Nakamura H, Northcott PA, Pajic M, Papaemmanuil E, Paradiso A, Pearson JV, Puente XS, Raine K, Ramakrishna M, Richardson AL, Richter J, Rosenstiel P, Schlesner M, Schumacher TN, Span PN, Teague JW, Totoki Y, Tutt ANJ, Valdés-Mas R, van Buuren MM, van’t Veer L, Vincent-Salomon A, Waddell N, Yates LR, Zucman-Rossi J, Andrew Futreal P, McDermott U, Lichter P, Meyerson M, Grimmond SM, Siebert R, Campo E, Shibata T, Pfister SM, Campbell PJ, Stratton MR (2013) Signatures of mutational processes in human cancer. Nature 500:415–421. doi:10.1038/nature12477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Samatar AA, Poulikakos PI (2014) Targeting RAS–ERK signalling in cancer: promises and challenges. Nat Rev Drug Discov 13:928–942. doi:10.1038/nrd4281

    Article  CAS  PubMed  Google Scholar 

  8. Holderfield M, Deuker MM, McCormick F, McMahon M (2014) Targeting RAF kinases for cancer therapy: BRAF-mutated melanoma and beyond. Nat Rev Cancer 14:455–467. doi:10.1038/nrc3760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Long GV, Menzies AM, Nagrial AM, Haydu LE, Hamilton AL, Mann GJ, Hughes TM, Thompson JF, Scolyer RA, Kefford RF (2011) Prognostic and clinicopathologic associations of oncogenic BRAF in metastatic melanoma. J Clin Oncol 29:1239–1246. doi:10.1200/JCO.2010.32.4327

    Article  PubMed  Google Scholar 

  10. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-Trench G, Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, JWC H, Leung SY, Yuen ST, Weber BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton MR, Futreal PA (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–954. doi:10.1038/nature00766

    Article  CAS  PubMed  Google Scholar 

  11. Houben R, Becker JC, Kappel A, Terheyden P, Bröcker E-B, Goetz R, Rapp UR (2004) Constitutive activation of the Ras-Raf signaling pathway in metastatic melanoma is associated with poor prognosis. J Carcinog 3:6. doi:10.1186/1477-3163-3-6

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wan PTC, Garnett MJ, Roe SM, Lee S, Niculescu-duvaz D, Good VM, Project CG, Jones CM, Marshall CJ, Springer CJ, Barford D, Marais R (2004) Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116:855–867

    Article  CAS  PubMed  Google Scholar 

  13. Harlé A, Salleron J, Franczak C, Dubois C, Filhine-Tressarieu P, Leroux A, Merlin J-L (2016) Detection of BRAF mutations using a fully automated platform and comparison with high resolution melting, real-time allele specific amplification, immunohistochemistry and next generation sequencing assays, for patients with metastatic melanoma. PLoS One 11:e0153576. doi:10.1371/journal.pone.0153576

    Article  PubMed  PubMed Central  Google Scholar 

  14. Menzies AM, Haydu LE, Visintin L, Carlino MS, Howle JR, Thompson JF, Kefford RF, Scolyer RA, Long GV (2012) Distinguishing clinicopathologic features of patients with V600E and V600K BRAF-mutant metastatic melanoma. Clin Cancer Res 18:3242–3249. doi:10.1158/1078-0432.CCR-12-0052

    Article  CAS  PubMed  Google Scholar 

  15. Curtin JA, Fridlyand J, Kageshita T, Patel HN, Busam KJ, Kutzner H, Cho K-H, Aiba S, Bröcker E-B, LeBoit PE, Pinkel D, Bastian BC (2005) Distinct sets of genetic alterations in melanoma. N Engl J Med 353:2135–2147. doi:10.1056/NEJMoa050092

    Article  CAS  PubMed  Google Scholar 

  16. Viros A, Fridlyand J, Bauer J, Lasithiotakis K, Garbe C, Pinkel D, Bastian BC (2008) Improving melanoma classification by integrating genetic and morphologic features. PLoS Med 5:e120. doi:10.1371/journal.pmed.0050120

    Article  PubMed  PubMed Central  Google Scholar 

  17. Broekaert SMC, Roy R, Okamoto I, van den Oord J, Bauer J, Garbe C, Barnhill RL, Busam KJ, Cochran AJ, Cook MG, Elder DE, McCarthy SW, Mihm MC, Schadendorf D, Scolyer RA, Spatz A, Bastian BC (2010) Genetic and morphologic features for melanoma classification. Pigment Cell Melanoma Res 23:763–770. doi:10.1111/j.1755-148X.2010.00778.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Verlinden I, van den Hurk K, Clarijs R, Willig AP, Stallinga CMHA, Roemen GMJM, van den Oord JJ, zur Hausen A, Speel E-JM, Winnepenninckx VJL (2014) BRAFV600E immunopositive melanomas show low frequency of heterogeneity and association with epithelioid tumor cells. Medicine (Baltimore) 93:e285. doi:10.1097/MD.0000000000000285

    Article  CAS  Google Scholar 

  19. Ilie M, Long-Mira E, Funck-Brentano E, Lassalle S, Butori C, Lespinet-Fabre V, Bordone O, Gay A, Zahaf K, Poissonnet G, Lacour J-P, Bahadoran P, Ballotti R, Gros A, Dutriaux C, Saiag P, Merlio J-P, Vergier B, Emile JF, Hofman V, Hofman P (2015) Immunohistochemistry as a potential tool for routine detection of the NRAS Q61R mutation in patients with metastatic melanoma. J Am Acad Dermatol 72:786–793. doi:10.1016/j.jaad.2015.01.012

    Article  CAS  PubMed  Google Scholar 

  20. Johnson DB, Puzanov I (2015) Treatment of NRAS-mutant melanoma. Curr Treat Options in Oncol 16:15. doi:10.1007/s11864-015-0330-z

    Article  Google Scholar 

  21. Demunter A, Ahmadian MR, Libbrecht L, Stas M, Baens M, Scheffzek K, Degreef H, De Wolf-Peeters C, Van den Oord JJ (2001) A novel N-ras mutation in malignant melanoma is associated with excellent prognosis. Cancer Res 61:4916–4922

    CAS  PubMed  Google Scholar 

  22. Carlino MS, Todd JR, Rizos H (2014) Resistance to c-kit inhibitors in melanoma: insights for future therapies. Oncoscience 1:423. doi:10.18632/oncoscience.51

    Article  PubMed  PubMed Central  Google Scholar 

  23. Carvajal RD, Antonescu CR, Wolchok JD, Chapman PB, Roman RA, Teitcher J, Panageas KS, Busam KJ, Chmielowski B, Lutzky J, Pavlick AC, Fusco A, Cane L, Takebe N, Vemula S, Bouvier N, Bastian BC, Schwartz GK (2011) KIT as a therapeutic target in metastatic melanoma. JAMA 305:2327. doi:10.1001/jama.2011.746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bastian BC, Esteve-Puig R (2013) Targeting activated KIT signaling for melanoma therapy. J Clin Oncol 31:3288–3290. doi:10.1200/JCO.2013.50.3227

    Article  CAS  PubMed  Google Scholar 

  25. Wiesner T, Kiuru M, Scott SN, Arcila M, Halpern AC, Hollmann T, Berger MF, Busam KJ (2015) NF1 mutations are common in desmoplastic melanoma. Am J Surg Pathol 39:1357–1362. doi:10.1097/PAS.0000000000000451

    Article  PubMed  PubMed Central  Google Scholar 

  26. Van Raamsdonk CD, Griewank KG, Crosby MB, Garrido MC, Vemula S, Wiesner T, Obenauf AC, Wackernagel W, Green G, Bouvier N, Sozen MM, Baimukanova G, Roy R, Heguy A, Dolgalev I, Khanin R, Busam K, Speicher MR, O’Brien J, Bastian BC (2010) Mutations in GNA11 in uveal melanoma. N Engl J Med 363:2191–2199. doi:10.1056/NEJMoa1000584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Helgadottir H, Hoiom V (2016) The genetics of uveal melanoma: current insights. Appl Clin Genet Volume 9:147–155. doi:10.2147/TACG.S69210

    Article  Google Scholar 

  28. Clark WH, From L, Bernardino EA, Mihm MC (1969) The histogenesis and biologic behavior of primary human malignant melanomas of the skin. Cancer Res 29:705–727

    PubMed  Google Scholar 

  29. Caroline Robert, Boguslawa Karaszewska, Jacob Schachter, Piotr Rutkowski, Andrzej Mackiewicz, Daniil Stroiakovski, Michael Lichinitser, Reinhard Dummer, Florent Grange, Laurent Mortier, Vanna Chiarion-Sileni, Kamil Drucis, Ivana Krajsova, Axel Hauschild, Paul Lorigan, Pascal Wolter, Georgina V. Long, Keith Flaherty, Paul Nathan, Antoni Ribas, Anne-Marie Martin, Peng Sun, Wendy Crist, Jeff Legos, Stephen D. Rubin, Shonda M. Little, Dirk Schadendorf, Caroline Robert, Boguslawa Karaszewska, Jacob Schachter, Piotr Rutkowski, Andrzej Mackiewicz, Daniil Stroiakovski, Michael Lichinitser, Reinhard Dummer, Florent Grange, Laurent Mortier, Vanna Chiarion-Sileni, Kamil Drucis, Ivana Krajsova, Axel Hauschild, Paul Lorigan, Pascal Wolter, Georgina V. Long, Keith Flaherty, Paul Nathan, Antoni Ribas, Anne-Marie Martin, Peng Sun, Wendy Crist, Jeff Legos, Stephen D. Rubin, Shonda M. Little, Dirk Schadendorf, (2015) Improved Overall Survival in Melanoma with Combined Dabrafenib and Trametinib. New England Journal of Medicine 372 (1):30–39

  30. James Larkin, Paolo A. Ascierto, Brigitte Dréno, Victoria Atkinson, Gabriella Liszkay, Michele Maio, Mario Mandalà, Lev Demidov, Daniil Stroyakovskiy, Luc Thomas, Luis de la Cruz-Merino, Caroline Dutriaux, Claus Garbe, Mika A. Sovak, Ilsung Chang, Nicholas Choong, Stephen P. Hack, Grant A. McArthur, Antoni Ribas, James Larkin, Paolo A. Ascierto, Brigitte Dréno, Victoria Atkinson, Gabriella Liszkay, Michele Maio, Mario Mandalà, Lev Demidov, Daniil Stroyakovskiy, Luc Thomas, Luis de la Cruz-Merino, Caroline Dutriaux, Claus Garbe, Mika A. Sovak, Ilsung Chang, Nicholas Choong, Stephen P. Hack, Grant A. McArthur, Antoni Ribas, (2014) Combined Vemurafenib and Cobimetinib in-Mutated Melanoma. New England Journal of Medicine 371 (20):1867–1876

  31. Dummer R, Ascierto PA, Gogas HJ, Arance A, Mandala M, Liszkay G, Garbe C, Schadendorf D, Krajsova I, Gutzmer R, Sileni VC, Dutriaux C, De Groot JWB, Yamazaki N, Loquai C, Parseval LAM, Pickard MD, Sandor V, Robert C, Flaherty KT (2016) Results of COLUMBUS part 1: a phase 3 trial of encorafenib (ENCO) plus binimetinib (BINI) versus vemurafenib (VEM) or ENCO in BRAF-mutant melanoma. Society for Melanoma Research (SMR) Annual Congress. http://www.arraybiopharma.com/files/6314/7865/9329/COLUMBUSprimary_SMR2016OralFINAL_110916.pdf. Accessed 5 Mar 2017

  32. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, Dummer R, Garbe C, Testori A, Maio M, Hogg D, Lorigan P, Lebbe C, Jouary T, Schadendorf D, Ribas A, O’Day SJ, Sosman JA, Kirkwood JM, Eggermont AMM, Dreno B, Nolop K, Li J, Nelson B, Hou J, Lee RJ, Flaherty KT, McArthur GA (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364:2507–2516. doi:10.1056/NEJMoa1103782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hauschild A, Grob J-J, Demidov LV, Jouary T, Gutzmer R, Millward M, Rutkowski P, Blank CU, Miller WH, Kaempgen E, Martín-Algarra S, Karaszewska B, Mauch C, Chiarion-Sileni V, Martin A-M, Swann S, Haney P, Mirakhur B, Guckert ME, Goodman V, Chapman PB (2012) Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet 380:358–365. doi:10.1016/S0140-6736(12)60868-X

    Article  CAS  PubMed  Google Scholar 

  34. Sosman JA, Kim KB, Schuchter L, Gonzalez R, Pavlick AC, Weber JS, McArthur GA, Hutson TE, Moschos SJ, Flaherty KT, Hersey P, Kefford R, Lawrence D, Puzanov I, Lewis KD, Amaravadi RK, Chmielowski B, Lawrence HJ, Shyr Y, Ye F, Li J, Nolop KB, Lee RJ, Joe AK, Ribas A (2012) Survival in BRAF V600–mutant advanced melanoma treated with vemurafenib. N Engl J Med 366:707–714. doi:10.1056/NEJMoa1112302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Johnson DB, Menzies AM, Zimmer L, Eroglu Z, Ye F, Zhao S, Rizos H, Sucker A, Scolyer RA, Gutzmer R, Gogas H, Kefford RF, Thompson JF, Becker JC, Berking C, Egberts F, Loquai C, Goldinger SM, Pupo GM, Hugo W, Kong X, Garraway LA, Sosman JA, Ribas A, Lo RS, Long GV, Schadendorf D (2015) Acquired BRAF inhibitor resistance: a multicenter meta-analysis of the spectrum and frequencies, clinical behaviour, and phenotypic associations of resistance mechanisms. Eur J Cancer 51:2792–2799. doi:10.1016/j.ejca.2015.08.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhu Z, Liu W, Gotlieb V (2016) The rapidly evolving therapies for advanced melanoma—towards immunotherapy, molecular targeted therapy, and beyond. Crit Rev Oncol Hematol 99:91–99. doi:10.1016/j.critrevonc.2015.12.002

    Article  PubMed  Google Scholar 

  37. Kakavand H, Walker E, Lum T, Wilmott JS, Selinger CI, Smith E, Saw RPM, Yu B, Cooper WA, Long GV, O’Toole SA, Scolyer RA (2016) BRAF V600E and NRAS Q61L/Q61R mutation analysis in metastatic melanoma using immunohistochemistry: a study of 754 cases highlighting potential pitfalls and guidelines for interpretation and reporting. Histopathology 69:680–686. doi:10.1111/his.12992

    Article  PubMed  Google Scholar 

  38. Flaherty KT, Robert C, Hersey P, Nathan P, Garbe C, Milhem M, Demidov LV, Hassel JC, Rutkowski P, Mohr P, Dummer R, Trefzer U, Larkin JMG, Utikal J, Dreno B, Nyakas M, Middleton MR, Becker JC, Casey M, Sherman LJ, Wu FS, Ouellet D, Martin A-M, Patel K, Schadendorf D (2012) Improved survival with MEK inhibition in BRAF-mutated melanoma. N Engl J Med 367:107–114. doi:10.1056/NEJMoa1203421

    Article  CAS  PubMed  Google Scholar 

  39. Long GV, Stroyakovskiy D, Gogas H, Levchenko E, de Braud F, Larkin J, Garbe C, Jouary T, Hauschild A, Grob JJ, Chiarion Sileni V, Lebbe C, Mandalà M, Millward M, Arance A, Bondarenko I, Haanen JBAG, Hansson J, Utikal J, Ferraresi V, Kovalenko N, Mohr P, Probachai V, Schadendorf D, Nathan P, Robert C, Ribas A, DeMarini DJ, Irani JG, Casey M, Ouellet D, Martin A-M, Le N, Patel K, Flaherty K (2014) Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma. N Engl J Med 371:1877–1888. doi:10.1056/NEJMoa1406037

    Article  PubMed  Google Scholar 

  40. Flaherty KT, Infante JR, Daud A, Gonzalez R, Kefford RF, Sosman J, Hamid O, Schuchter L, Cebon J, Ibrahim N, Kudchadkar R, Burris HA, Falchook G, Algazi A, Lewis K, Long GV, Puzanov I, Lebowitz P, Singh A, Little S, Sun P, Allred A, Ouellet D, Kim KB, Patel K, Weber J (2012) Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med 367:1694–1703. doi:10.1056/NEJMoa1210093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ascierto PA, McArthur GA, Dréno B, Atkinson V, Liszkay G, Di Giacomo AM, Mandalà M, Demidov L, Stroyakovskiy D, Thomas L, de la Cruz-Merino L, Dutriaux C, Garbe C, Yan Y, Wongchenko M, Chang I, Hsu JJ, Koralek DO, Rooney I, Ribas A, Larkin J (2016) Cobimetinib combined with vemurafenib in advanced BRAFV600-mutant melanoma (coBRIM): updated efficacy results from a randomised, double-blind, phase 3 trial. Lancet Oncol 17:1248–1260. doi:10.1016/S1470-2045(16)30122-X

    Article  CAS  PubMed  Google Scholar 

  42. Dummer R, Schadendorf D, Ascierto PA, Arance A, Dutriaux C, Di Giacomo AM, Rutkowski P, Del Vecchio M, Gutzmer R, Mandala M, Thomas L, Demidov L, Garbe C, Hogg D, Liszkay G, Queirolo P, Wasserman E, Ford J, Weill M, Sirulnik LA, Jehl V, Bozón V, Long GV, Flaherty K (2017) Binimetinib versus dacarbazine in patients with advanced NRAS -mutant melanoma (NEMO): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol 2045:1–11. doi:10.1016/S1470-2045(17)30180-8

    Google Scholar 

  43. Colombino M, Capone M, Lissia A, Cossu A, Rubino C, De Giorgi V, Massi D, Fonsatti E, Staibano S, Nappi O, Pagani E, Casula M, Manca A, Sini M, Franco R, Botti G, Caracò C, Mozzillo N, Ascierto PA, Palmieri G (2012) BRAF/NRAS mutation frequencies among primary tumors and metastases in patients with melanoma. J Clin Oncol 30:2522–2529. doi:10.1200/JCO.2011.41.2452

    Article  PubMed  Google Scholar 

  44. Heinzerling L, Baiter M, Kühnapfel S, Schuler G, Keikavoussi P, Agaimy A, Kiesewetter F, Hartmann A, Schneider-Stock R (2013) Mutation landscape in melanoma patients clinical implications of heterogeneity of BRAF mutations. Br J Cancer 109:2833–2841. doi:10.1038/bjc.2013.622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bradish JR, Richey JD, Post KM, Meehan K, Sen JD, Malek AJ, Katona TM, Warren S, Logan TF, Fecher LA, Cheng L (2015) Discordancy in BRAF mutations among primary and metastatic melanoma lesions: clinical implications for targeted therapy. Mod Pathol 28:480–486. doi:10.1038/modpathol.2014.136

    Article  CAS  PubMed  Google Scholar 

  46. Santiago-Walker A, Gagnon R, Mazumdar J, Casey M, Long GV, Schadendorf D, Flaherty K, Kefford R, Hauschild A, Hwu P, Haney P, O’Hagan A, Carver J, Goodman V, Legos J, Martin A-M (2016) Correlation of BRAF mutation status in circulating-free DNA and tumor and association with clinical outcome across four BRAFi and MEKi clinical trials. Clin Cancer Res 22:567–574. doi:10.1158/1078-0432.CCR-15-0321

    Article  CAS  PubMed  Google Scholar 

  47. Anwar MAF, Murad F, Dawson E, Abd Elmageed ZY, Tsumagari K, Kandil E (2016) Immunohistochemistry as a reliable method for detection of BRAF-V600E mutation in melanoma: a systematic review and meta-analysis of current published literature. J Surg Res 203:407–415. doi:10.1016/j.jss.2016.04.029

    Article  CAS  PubMed  Google Scholar 

  48. Lade-Keller J, Rømer KM, Guldberg P, Riber-Hansen R, Hansen LL, Steiniche T, Hager H, Kristensen LS (2013) Evaluation of BRAF mutation testing methodologies in formalin-fixed, paraffin-embedded cutaneous melanomas. J Mol Diagnostics 15:70–80. doi:10.1016/j.jmoldx.2012.08.003

    Article  CAS  Google Scholar 

  49. Colomba E, Hélias-Rodzewicz Z, Von Deimling A, Marin C, Terrones N, Pechaud D, Surel S, Côté J-F, Peschaud F, Capper D, Blons H, Zimmermann U, Clerici T, Saiag P, Emile J-F (2013) Detection of BRAF p.V600E mutations in melanomas. J Mol Diagnostics 15:94–100. doi:10.1016/j.jmoldx.2012.09.001

    Article  CAS  Google Scholar 

  50. Bruno W, Martinuzzi C, Andreotti V, Pastorino L, Spagnolo F, Dalmasso B, Cabiddu F, Gualco M, Ballestrero A, Bianchi-Scarrà G, Queirolo P, Grillo F, Mastracci L, Ghiorzo P, Melanoma Intergroup (IMI) on behalf of the I (2017) Heterogeneity and frequency of BRAF mutations in primary melanoma: comparison between molecular methods and immunohistochemistry. Oncotarget 8:8069–8082. doi:10.18632/oncotarget.14094

    PubMed  Google Scholar 

  51. Franczak C, Salleron J, Dubois C, Filhine-Trésarrieu P, Leroux A, Merlin J-L, Harlé A (2017) Comparison of five different assays for the detection of BRAF mutations in formalin-fixed paraffin embedded tissues of patients with metastatic melanoma. Mol Diagn Ther 1–8. doi:10.1007/s40291-017-0258-z

  52. Long GV, Wilmott JS, Capper D, Preusser M, Zhang YE, Thompson JF, Kefford RF, von Deimling A, Scolyer RA (2013) Immunohistochemistry is highly sensitive and specific for the detection of V600E BRAF mutation in melanoma. Am J Surg Pathol 37:61–65. doi:10.1097/PAS.0b013e31826485c0

    Article  PubMed  Google Scholar 

  53. Long E, Ilie M, Lassalle S, Butori C, Poissonnet G, Washetine K, Mouroux J, Lespinet V, Lacour JP, Taly V, Laurent-Puig P, Bahadoran P, Hofman V, Hofman P (2015) Why and how immunohistochemistry should now be used to screen for the BRAFV600E status in metastatic melanoma? The experience of a single institution (LCEP, nice, France). J Eur Acad Dermatology Venereol 29:2436–2443. doi:10.1111/jdv.13332

    Article  CAS  Google Scholar 

  54. Kong Y, Kumar SM, Xu X (2010) Molecular pathogenesis of sporadic melanoma and melanoma-initiating cells. Arch Pathol Lab Med 134:1740–1749. doi:10.1043/2009-0418-RAR.1

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Munhoz RR, Postow MA (2016) Recent advances in understanding antitumor immunity. F1000Research 5:2545. doi:10.12688/f1000research.9356.1

    Article  PubMed  PubMed Central  Google Scholar 

  56. Clemente CG, Mihm MC, Bufalino R, Zurrida S, Collini P, Cascinelli N (1996) Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma. Cancer 77:1303–1310. doi:10.1002/(SICI)1097-0142(19960401)77:7<1303::AID-CNCR12>3.0.CO;2-5

    Article  CAS  PubMed  Google Scholar 

  57. Cree IA, Booton R, Cane P, Gosney J, Ibrahim M, Kerr K, Lal R, Lewanski C, Navani N, Nicholson AG, Nicolson M, Summers Y (2016) PD-L1 testing for lung cancer in the UK: recognizing the challenges for implementation. Histopathology 69:177–186. doi:10.1111/his.12996

    Article  PubMed  Google Scholar 

  58. Gogas H, Polyzos A, Kirkwood J (2013) Immunotherapy for advanced melanoma: fulfilling the promise. Cancer Treat Rev 39:879–885. doi:10.1016/j.ctrv.2013.04.006

    Article  CAS  PubMed  Google Scholar 

  59. Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, Fitz LJ, Malenkovich N, Okazaki T, Byrne MC, Horton HF, Fouser L, Carter L, Ling V, Bowman MR, Carreno BM, Collins M, Wood CR, Honjo T (2000) Engagement of the Pd-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192:1027–1034. doi:10.1084/jem.192.7.1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Melero I, Berman DM, Aznar MA, Korman AJ, Gracia JLP, Haanen J (2015) Evolving synergistic combinations of targeted immunotherapies to combat cancer. Nat Rev Cancer 15:457–472. doi:10.1038/nrc3973

    Article  CAS  PubMed  Google Scholar 

  61. Zhao X, Subramanian S (2017) Intrinsic resistance of solid tumors to immune checkpoint blockade therapy. Cancer Res 77:817–822. doi:10.1158/0008-5472.CAN-16-2379

    Article  CAS  PubMed  Google Scholar 

  62. Mocellin S, Pasquali S, Rossi CR, Nitti D (2010) Interferon alpha adjuvant therapy in patients with high-risk melanoma: a systematic review and meta-analysis. JNCI J Natl Cancer Inst 102:493–501. doi:10.1093/jnci/djq009

    Article  CAS  PubMed  Google Scholar 

  63. Mahoney KM, Freeman GJ, McDermott DF (2015) The next immune-checkpoint inhibitors: PD-1/PD-L1 blockade in melanoma. Clin Ther 37:764–782. doi:10.1016/j.clinthera.2015.02.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJM, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbé C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723. doi:10.1056/NEJMoa1003466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Robert C, Thomas L, Bondarenko I, O’Day S, Weber J, Garbe C, Lebbe C, Baurain J-F, Testori A, Grob J-J, Davidson N, Richards J, Maio M, Hauschild A, Miller WH, Gascon P, Lotem M, Harmankaya K, Ibrahim R, Francis S, Chen T-T, Humphrey R, Hoos A, Wolchok JD (2011) Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 364:2517–2526. doi:10.1056/NEJMoa1104621

    Article  CAS  PubMed  Google Scholar 

  66. Schadendorf D, Hodi FS, Robert C, Weber JS, Margolin K, Hamid O, Patt D, Chen T-T, Berman DM, Wolchok JD (2015) Pooled analysis of long-term survival data from phase II and phase III trials of Ipilimumab in unresectable or metastatic melanoma. J Clin Oncol 33:1889–1894. doi:10.1200/JCO.2014.56.2736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, Hassel JC, Rutkowski P, McNeil C, Kalinka-Warzocha E, Savage KJ, Hernberg MM, Lebbé C, Charles J, Mihalcioiu C, Chiarion-Sileni V, Mauch C, Cognetti F, Arance A, Schmidt H, Schadendorf D, Gogas H, Lundgren-Eriksson L, Horak C, Sharkey B, Waxman IM, Atkinson V, Ascierto PA (2015) Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 372:320–330. doi:10.1056/NEJMoa1412082

    Article  CAS  PubMed  Google Scholar 

  68. Weber JS, D’Angelo SP, Minor D, Hodi FS, Gutzmer R, Neyns B, Hoeller C, Khushalani NI, Miller WH, Lao CD, Linette GP, Thomas L, Lorigan P, Grossmann KF, Hassel JC, Maio M, Sznol M, Ascierto PA, Mohr P, Chmielowski B, Bryce A, Svane IM, Grob J-J, Krackhardt AM, Horak C, Lambert A, Yang AS, Larkin J (2015) Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol 16:375–384. doi:10.1016/S1470-2045(15)70076-8

    Article  CAS  PubMed  Google Scholar 

  69. Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, Daud A, Carlino MS, McNeil C, Lotem M, Larkin J, Lorigan P, Neyns B, Blank CU, Hamid O, Mateus C, Shapira-Frommer R, Kosh M, Zhou H, Ibrahim N, Ebbinghaus S, Ribas A (2015) Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med 372:2521–2532. doi:10.1056/NEJMoa1503093

    Article  CAS  PubMed  Google Scholar 

  70. Robert C, Schadendorf D, Messina M, Hodi FS, O’Day S (2013) Efficacy and safety of retreatment with ipilimumab in patients with pretreated advanced melanoma who progressed after initially achieving disease control. Clin Cancer Res 19:2232–2239. doi:10.1158/1078-0432.CCR-12-3080

    Article  CAS  PubMed  Google Scholar 

  71. Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A (2017) Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168:707–723. doi:10.1016/j.cell.2017.01.017

    Article  CAS  PubMed  Google Scholar 

  72. O’Donnell JS, Smyth MJ, Teng MWL (2016) Acquired resistance to anti-PD1 therapy: checkmate to checkpoint blockade? Genome Med 8:111. doi:10.1186/s13073-016-0365-1

    Article  PubMed  PubMed Central  Google Scholar 

  73. Koyama S, Akbay EA, Li YY, Herter-Sprie GS, Buczkowski KA, Richards WG, Gandhi L, Redig AJ, Rodig SJ, Asahina H, Jones RE, Kulkarni MM, Kuraguchi M, Palakurthi S, Fecci PE, Johnson BE, Janne PA, Engelman JA, Gangadharan SP, Costa DB, Freeman GJ, Bueno R, Hodi FS, Dranoff G, Wong K-K, Hammerman PS (2016) Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat Commun 7:10501. doi:10.1038/ncomms10501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Shin DS, Zaretsky JM, Escuin-Ordinas H, Garcia-Diaz A, Hu-Lieskovan S, Kalbasi A, Grasso CS, Hugo W, Sandoval S, Torrejon DY, Palaskas N, Rodriguez GA, Parisi G, Azhdam A, Chmielowski B, Cherry G, Seja E, Berent-Maoz B, Shintaku IP, Le DT, Pardoll DM, Diaz LA, Tumeh PC, Graeber TG, Lo RS, Comin-Anduix B, Ribas A (2017) Primary resistance to PD-1 blockade mediated by JAK1/2 mutations. Cancer Discov 7:188–201. doi:10.1158/2159-8290.CD-16-1223

    Article  CAS  PubMed  Google Scholar 

  75. Zaretsky JM, Garcia-Diaz A, Shin DS, Escuin-Ordinas H, Hugo W, Hu-Lieskovan S, Torrejon DY, Abril-Rodriguez G, Sandoval S, Barthly L, Saco J, Homet Moreno B, Mezzadra R, Chmielowski B, Ruchalski K, Shintaku IP, Sanchez PJ, Puig-Saus C, Cherry G, Seja E, Kong X, Pang J, Berent-Maoz B, Comin-Anduix B, Graeber TG, Tumeh PC, Schumacher TNM, Lo RS, Ribas A (2016) Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med 375:819–829. doi:10.1056/NEJMoa1604958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chen P-L, Roh W, Reuben A, Cooper ZA, Spencer CN, Prieto PA, Miller JP, Bassett RL, Gopalakrishnan V, Wani K, De Macedo MP, Austin-Breneman JL, Jiang H, Chang Q, Reddy SM, Chen W-S, Tetzlaff MT, Broaddus RJ, Davies MA, Gershenwald JE, Haydu L, Lazar AJ, Patel SP, Hwu P, Hwu W-J, Diab A, Glitza IC, Woodman SE, Vence LM, Wistuba II, Amaria RN, Kwong LN, Prieto V, Davis RE, Ma W, Overwijk WW, Sharpe AH, Hu J, Futreal PA, Blando J, Sharma P, Allison JP, Chin L, Wargo JA (2016) Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discov 6:827–837. doi:10.1158/2159-8290.CD-15-1545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, Schadendorf D, Dummer R, Smylie M, Rutkowski P, Ferrucci PF, Hill A, Wagstaff J, Carlino MS, Haanen JB, Maio M, Marquez-Rodas I, McArthur GA, Ascierto PA, Long GV, Callahan MK, Postow MA, Grossmann K, Sznol M, Dreno B, Bastholt L, Yang A, Rollin LM, Horak C, Hodi FS, Wolchok JD (2015) Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 373:23–34. doi:10.1056/NEJMoa1504030

    Article  PubMed  Google Scholar 

  78. Van Allen EM, Miao D, Schilling B, Shukla SA, Blank C, Zimmer L, Sucker A, Hillen U, Geukes Foppen MH, Goldinger SM, Utikal J, Hassel JC, Weide B, Kaehler KC, Loquai C, Mohr P, Gutzmer R, Dummer R, Gabriel S, Wu CJ, Schadendorf D, Garraway LA (2015) Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 350:207–211 doi:10.1126/science.aad0095

  79. Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, Walsh LA, Postow MA, Wong P, Ho TS, Hollmann TJ, Bruggeman C, Kannan K, Li Y, Elipenahli C, Liu C, Harbison CT, Wang L, Ribas A, Wolchok JD, Chan TA (2014) Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 371:2189–2199. doi:10.1056/NEJMoa1406498

    Article  PubMed  PubMed Central  Google Scholar 

  80. Seremet T, Koch A, Jansen Y, Schreuer M, Wilgenhof S, Del Marmol V, Liènard D, Thielemans K, Schats K, Kockx M, Van Criekinge W, Coulie PG, De Meyer T, van Baren N, Neyns B (2016) Molecular and epigenetic features of melanomas and tumor immune microenvironment linked to durable remission to ipilimumab-based immunotherapy in metastatic patients. J Transl Med 14:232. doi:10.1186/s12967-016-0990-x

    Article  PubMed  PubMed Central  Google Scholar 

  81. Hamid O, Schmidt H, Nissan A, Ridolfi L, Aamdal S, Hansson J, Guida M, Hyams DM, Gómez H, Bastholt L, Chasalow SD, Berman D (2011) A prospective phase II trial exploring the association between tumor microenvironment biomarkers and clinical activity of ipilimumab in advanced melanoma. J Transl Med 9:204. doi:10.1186/1479-5876-9-204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ji R-R, Chasalow SD, Wang L, Hamid O, Schmidt H, Cogswell J, Alaparthy S, Berman D, Jure-Kunkel M, Siemers NO, Jackson JR, Shahabi V (2012) An immune-active tumor microenvironment favors clinical response to ipilimumab. Cancer Immunol Immunother 61:1019–1031. doi:10.1007/s00262-011-1172-6

    Article  CAS  PubMed  Google Scholar 

  83. Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJM, Robert L, Chmielowski B, Spasic M, Henry G, Ciobanu V, West AN, Carmona M, Kivork C, Seja E, Cherry G, Gutierrez AJ, Grogan TR, Mateus C, Tomasic G, Glaspy JA, Emerson RO, Robins H, Pierce RH, Elashoff DA, Robert C, Ribas A (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515:568–571. doi:10.1038/nature13954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Taube JM, Klein A, Brahmer JR, Xu H, Pan X, Kim JH, Chen L, Pardoll DM, Topalian SL, Anders RA (2014) Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res 20:5064–5074. doi:10.1158/1078-0432.CCR-13-3271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Herbst RS, Soria J-C, Kowanetz M, Fine GD, Hamid O, Gordon MS, Sosman JA, McDermott DF, Powderly JD, Gettinger SN, HEK K, Horn L, Lawrence DP, Rost S, Leabman M, Xiao Y, Mokatrin A, Koeppen H, Hegde PS, Mellman I, Chen DS, Hodi FS (2014) Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515:563–567. doi:10.1038/nature14011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joost J. van den Oord.

Ethics declarations

Conflict of interest

C. Melis, J.J. van den Oord and O. Bechter declare that they have no conflict of interest. A. Rogiers received travel support from BMS and Novartis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melis, C., Rogiers, A., Bechter, O. et al. Molecular genetic and immunotherapeutic targets in metastatic melanoma. Virchows Arch 471, 281–293 (2017). https://doi.org/10.1007/s00428-017-2113-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-017-2113-3

Keywords

Navigation