Skip to main content

Advertisement

Log in

NGS-based BRCA1/2 mutation testing of high-grade serous ovarian cancer tissue: results and conclusions of the first international round robin trial

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

With the approval of olaparib as monotherapy treatment in platinum-sensitive, relapsed high-grade serous ovarian cancer by the European Medical Agency (EMA), comprehensive genotyping of BRCA1 and BRCA2 in tumor tissue has become a mandatory pre-therapeutic test. This requires significant advances in routine tumor test methodologies due to the large size of both genes and the lack of mutational hot spots. Classical focused screening approaches, like Sanger sequencing, do not allow for a sensitive, rapid, and economic analysis of tumor tissue. Next-generation sequencing (NGS) approaches employing targeted panels for BRCA1/2 to interrogate formalin-fixed and paraffin-embedded tumor samples from either surgical resection or biopsy specimens can overcome these limitations. Although focused NGS methods have been implemented by few centers in routine molecular diagnostics for the analysis of some druggable oncogenic mutations, the reliable diagnostic testing of the entire coding regions of BRCA1 and BRCA2 was a new challenge requiring extensive technological improvement and quality management. Here, we describe the implementation and results of the first round robin trial for BRCA1/2 mutation testing in tumor tissue that was conducted in central Europe on May 2015, shortly after the approval and prior to the official release of olaparib. The high success rate of 81 % (21/26 test centers) demonstrates that BRCA1/2 multicenter mutation testing is well feasible in FFPE tumor tissue, extending to other tumor entities beyond ovarian cancer. The high number of test centers passing the trial demonstrates the success of the concerted efforts by German, Swiss, and Austrian pathology centers to ensure quality-controlled NGS-based testing and proves the potential of this technology in routine molecular pathology. On the basis of our results, we provide recommendations for predictive testing of tumor tissue for BRCA1/2 to clinical decision making in ovarian cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, Rosso S, Coebergh JWW, Comber H, Forman D, Bray F (2013) Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer 49(6):1374–1403. doi:10.1016/j.ejca.2012.12.027

    Article  CAS  PubMed  Google Scholar 

  2. Shimizu Y, Kamoi S, Amada S, Akiyama F, Silverberg SG (1998) Toward the development of a universal grading system for ovarian epithelial carcinoma. Cancer 82(5):893–901. doi:10.1002/(SICI)1097-0142(19980301)82:5<893::AID-CNCR14>3.0.CO;2-W

    Article  CAS  PubMed  Google Scholar 

  3. Bertelsen K, Hølund B, Andersen E (1993) Reproducibility and prognostic value of histologic type and grade in early epithelial ovarian cancer. Int J Gynecol Cancer 3(2):72–79. doi:10.1046/j.1525-1438.1993.03020072.x

    Article  PubMed  Google Scholar 

  4. Baak JP, Delemarre JF, Langley FA, Talerman A (1986) Grading ovarian tumors. Evaluation of decision making by different pathologists. Anal Quant Cytol Histol 8(5):349–353

    CAS  PubMed  Google Scholar 

  5. Landen CN, Birrer MJ, Sood AK (2008) Early events in the pathogenesis of epithelial ovarian cancer. J Clin Oncol 26(6):995–1005

    Article  PubMed  Google Scholar 

  6. Kurman RJ, Shih I-M (2011) Molecular pathogenesis and extraovarian origin of epithelial ovarian cancer—shifting the paradigm. Hum Pathol 42(7):918–931. doi:10.1016/j.humpath.2011.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shih I-M, Kurman RJ (2004) Ovarian tumorigenesis: a proposed model based on morphological and molecular genetic analysis. Am J Pathol 164(5):1511–1518. doi:10.1016/S0002-9440(10)63708-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chan JK, Tian C, Teoh D, Monk BJ, Herzog T, Kapp DS, Bell J (2010) Survival after recurrence in early-stage high-risk epithelial ovarian cancer: a Gynecologic Oncology Group study. Gynecol Oncol 116(3):307–311. doi:10.1016/j.ygyno.2009.10.074

    Article  PubMed  Google Scholar 

  9. Alsop K, Fereday S, Meldrum C, deFazio A, Emmanuel C, George J, Dobrovic A, Birrer MJ, Webb PM, Stewart C, Friedlander M, Fox S, Bowtell D, Mitchell G (2012) BRCA mutation frequency and patterns of treatment response in BRCA mutation-positive women with ovarian cancer: a report from the Australian Ovarian Cancer Study Group. J Clin Oncol 30(21):2654–2663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ledermann J, Harter P, Gourley C, Friedlander M, Vergote I, Rustin G, Scott CL, Meier W, Shapira-Frommer R, Safra T, Matei D, Fielding A, Spencer S, Dougherty B, Orr M, Hodgson D, Barrett JC, Matulonis U (2014) Olaparib maintenance therapy in patients with platinum-sensitive relapsed serous ovarian cancer: a preplanned retrospective analysis of outcomes by BRCA status in a randomised phase 2 trial. Lancet Oncol 15(8):852–861. doi:10.1016/S1470-2045(14)70228-1

    Article  CAS  PubMed  Google Scholar 

  11. Luthra R, Chen H, Roy-Chowdhuri S, Singh R (2015) Next-generation sequencing in clinical molecular diagnostics of cancer: advantages and challenges. Cancers 7(4):0874

    Article  Google Scholar 

  12. Shen T, Pajaro-van de Stadt S, Yeat NC, Lin JC-H (2015) Clinical applications of next generation sequencing in cancer: from panels, to exomes, to genomes. Front Genet 6:215

    Article  PubMed  PubMed Central  Google Scholar 

  13. König K, Peifer M, Fassunke J, Ihle M, Künstlinger H, Heydt C, Stamm K, Ueckeroth F, Vollbrecht C, Bos M, Gardizi M, Scheffler M, Nogova L, Leenders F, Albus K, Meder L, Becker K, Florin A, Rommerscheidt-Fuss U, Altmüller J, Kloth M, Nürnberg P, Henkel T, Bikar S-E, Sos M, Geese W, Strauss L, Ko Y-D, Gerigk U, Odenthal M, Zander T, Wolf J, Merkelbach-Bruse S, Buettner R, Heukamp L (2015) Implementation of amplicon parallel sequencing leads to improvement of diagnosis and therapy of lung cancer patients. J Thorac Oncol 10(7):1049–1057

    Article  PubMed  Google Scholar 

  14. Adank MA, Brogi E, Bogomolniy F, Wadsworth EA, Lafaro KJ, Yee CJ, Kirchhoff T, Meijers-Heijboer EJ, Kauff ND, Boyd J, Offit K (2006) Accuracy of BRCA1 and BRCA2 founder mutation analysis in formalin-fixed and paraffin-embedded (FFPE) tissue. Familial Cancer 5(4):337–342. doi:10.1007/s10689-006-0003-y

    Article  CAS  PubMed  Google Scholar 

  15. Ellison G, Huang S, Carr H, Wallace A, Ahdesmaki M, Bhaskar S, Mills J (2015) A reliable method for the detection of BRCA1 and BRCA2 mutations in fixed tumour tissue utilising multiplex PCR-based targeted next generation sequencing. BMC Clin Pathol 15(1):5

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kurman RJ, Carcangiu ML, Herrington CS, Young RH (2014) WHO classification of tumours, Volume 6, WHO Press

  17. Endris V, Penzel R, Warth A, Muckenhuber A, Schirmacher P, Stenzinger A, Weichert W (2013) Molecular diagnostic profiling of lung cancer specimens with a semiconductor-based massive parallel sequencing approach: feasibility, costs, and performance compared with conventional sequencing. J Mol Diagn 15(6):765–775. doi:10.1016/j.jmoldx.2013.06.002

    Article  CAS  PubMed  Google Scholar 

  18. Pfarr N, Stenzinger A, Penzel R, Warth A, Dienemann H, Schirmacher P, Weichert W, Endris V (2015) High-throughput diagnostic profiling of clinically actionable gene fusions in lung cancer. Genes, Chromosome Cancer:N/A-n/a. doi:10.1002/gcc.22297

    Google Scholar 

  19. Stenzinger A, Pfarr N, Penzel R, Wolf T, Schirmacher P, Endris V, Weichert W (2015) Semiconductor-based sequencing of formalin-fixed, paraffin-embedded colorectal cancer samples. Oncologist 20(5):e10–e11

    Article  PubMed  PubMed Central  Google Scholar 

  20. Plon SE, Eccles DM, Easton D, Foulkes WD, Genuardi M, Greenblatt MS, Hogervorst FBL, Hoogerbrugge N, Spurdle AB, Tavtigian SV (2008) Sequence variant classification and reporting: recommendations for improving the interpretation of cancer susceptibility genetic test results. Hum Mutat 29(11):1282–1291. doi:10.1002/humu.20880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. D’Argenio V, Esposito MV, Telese A, Precone V, Starnone F, Nunziato M, Cantiello P, Iorio M, Evangelista E, D’Aiuto M, Calabrese A, Frisso G, D’Aiuto G, Salvatore F (2015) The molecular analysis of BRCA1 and BRCA2: next-generation sequencing supersedes conventional approaches. Clin Chim Acta 446:221–225. doi:10.1016/j.cca.2015.03.045

    Article  PubMed  Google Scholar 

  22. Hirotsu Y, Nakagomi H, Sakamoto I, Amemiya K, Mochizuki H, Omata M (2015) Detection of BRCA1 and BRCA2 germline mutations in Japanese population using next-generation sequencing. Mol Genet Genom Med 3(2):121–129. doi:10.1002/mgg3.120

    Article  CAS  Google Scholar 

  23. Trujillano D, Weiss MER, Schneider J, Köster J, Papachristos EB, Saviouk V, Zakharkina T, Nahavandi N, Kovacevic L, Rolfs A (2015) Next-generation sequencing of the BRCA1 and BRCA2 genes for the genetic diagnostics of hereditary breast and/or ovarian cancer. J Mol Diagn 17(2):162–170. doi:10.1016/j.jmoldx.2014.11.004

    Article  CAS  PubMed  Google Scholar 

  24. Desmond A, Kurian AW, Gabree M, et al. (2015) Clinical actionability of multigene panel testing for hereditary breast and ovarian cancer risk assessment. JAMA Oncol 1(7):943–951. doi:10.1001/jamaoncol.2015.2690

    Article  PubMed  Google Scholar 

  25. Howarth DR, Lum SS, Esquivel P, Garberoglio CA, Senthil M, Solomon NL (2015) Initial results of multigene panel testing for hereditary breast and ovarian cancer and Lynch syndrome. Am Surg 81(10):941–944

    PubMed  Google Scholar 

  26. Kapoor N, Curcio L, Blakemore C, Bremner A, McFarland R, West J, Banks K (2015) Multigene panel testing detects equal rates of pathogenic BRCA1/2 mutations and has a higher diagnostic yield compared to limited BRCA1/2 analysis alone in patients at risk for hereditary breast cancer. Ann Surg Oncol 22(10):3282–3288. doi:10.1245/s10434-015-4754-2

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Schirmacher.

Ethics declarations

Usage of the tissue was approved by the local ethics committee in Heidelberg (No. 206/2005) and Berlin (2013 amendment of No. EA1 139/05). In compliance with the current version of the German Gene Law, for none of the cases, the specific germline status of BRCA1/2 was determined.

Conflict of interest

VE, SMB, AJ, HK, TK, RB, SDE, MD, WW, and PS are advisory board members of Astra Zeneca. VE, MD, SDE, WW, TK, and PS received honoraria from Astra Zeneca for serving as speakers.

Electronic supplementary material

Supplementary Table 1

Packaging schemes for the test samples that were sent to each participating test center of the phase II test (XLSX 12 kb)

Supplementary Table 2

Detailed overview of genotyping results of the phase I trial for each test center. Somatic mutations including IARC score and allele frequencies are provided for each tumor sample (XLSX 12 kb)

Supplementary Table 3

Detailed overview of genotyping results of the phase II trial for each test center. Somatic mutations including IARC score and allele frequencies are provided for each tumor sample (XLSX 98 kb)

Supplementary Table 4

Overview of different analyses and annotation softwares used in the round robin trial (where available) (XLSX 10 kb)

Supplementary Fig. 1

Allelic frequencies and coverage of BRCA1/2 mutations across all test centers of the phase II test. Data are visualized as boxplots, upper and lower quartiles interquartile range and mean. Whiskers indicate outliers. a Reported allelic frequencies per mutation. b Reported depth of coverage per mutation (GIF 95 kb)

High resolution image (TIFF 726 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Endris, V., Stenzinger, A., Pfarr, N. et al. NGS-based BRCA1/2 mutation testing of high-grade serous ovarian cancer tissue: results and conclusions of the first international round robin trial. Virchows Arch 468, 697–705 (2016). https://doi.org/10.1007/s00428-016-1919-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-016-1919-8

Keywords

Navigation