Skip to main content

Advertisement

Log in

The early stages of tumor angiogenesis in human osteosarcoma: a nude mice xenotransplant model

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Osteosarcoma (Os) is the most common malignant bone tumor in childhood and not rare in adults. In recent years, much research has focused on the role of angiogenesis in tumor development, growth, invasion, and metastasis. The aims of this study were to characterize neovascularization established between the xenotransplanted Os and the host at histological, immunohistochemical, ultrastructural, and molecular level, and to evaluate if this model could be used in testing new anti-angiogenic drugs. Three xenotransplanted human Os were evaluated. Tumor pieces 3–4 mm in size were implanted subcutaneously on the back of athymic Balb-c nude mice (n = 14). The animals were killed at 24, 48, and 72 h and 7, 14, 21, and 28 days after implantation. Tumor samples were either fixed in 10 % formaldehyde and embedded in paraffin for histological analysis, or fixed with glutaraldehyde (2 %) for electron microscopy or retained non-fixed for molecular analysis (ELISA and qRT-PCR). Morphologically, intense neo-vasculogenesis within tumor parenchyma was present between the first and third week after transplantation. Immunohistochemistry demonstrated overexpression of VEGF and their receptors together with PDFGFRA 24–48 h after tumor implantation. Additionally, neoplastic cells co-expressed chemokines (CXCL9, CXCL10, and GRO) and their receptors. Molecular studies showed two expression profiles, distinguishing an early and a late phase in the angiogenic process. In Os, our model showed two stages of induced angiogenesis, with close association between histological and molecular events. This approximation could be of use for testing the effect of different anti-angiogenic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fletcher CDM, Bridge JA, Hogendoorn PCW, Mertens F (2013) WHO classification of tumours of soft tissue and bone. IARC, Lyon

    Google Scholar 

  2. Link MP, Goorin AM, Miser AW et al (1986) The effect of adjuvant chemotherapy on relapse-free survival in patients with osteosarcoma of the extremity. N Engl J Med 314:1600–1606

    Article  CAS  PubMed  Google Scholar 

  3. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  4. Mikulic D, Ilic I, Cepulic M et al (2004) Tumor angiogenesis and outcome in osteosarcoma. Pediatr Hematol Oncol 21:611–619

    Article  PubMed  Google Scholar 

  5. Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473:298–307

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Vandercappellen J, Van Damme J, Struyf S (2008) The role of CXC chemokines and their receptors in cancer. Cancer Lett 267:226–244

    Article  CAS  PubMed  Google Scholar 

  7. Liao YX, Zhou CH, Zeng H et al (2013) The role of the CXCL12-CXCR4/CXCR7 axis in the progression and metastasis of bone sarcomas (Review). Int J Mol Med 32:1239–1246

    CAS  PubMed  Google Scholar 

  8. Brennecke P, Arlt MJ, Muff R et al (2013) Expression of the chemokine receptor CXCR7 in CXCR4-expressing human 143B osteosarcoma cells enhances lung metastasis of intratibial xenografts in SCID mice. PLoS ONE 8:e74045

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. DuBois S, Demetri G (2007) Markers of angiogenesis and clinical features in patients with sarcoma. Cancer 109:813–819

    Article  CAS  PubMed  Google Scholar 

  10. Kubo T, Shimose S, Fujimori J et al (2013) Diversity of angiogenesis among malignant bone tumors. Mol Clin Oncol 1:131–136

    PubMed Central  PubMed  Google Scholar 

  11. Pignochino Y, Dell’Aglio C, Basirico M et al (2013) The combination of Sorafenib and Everolimus Abrogates mTORC1 and mTORC2 upregulation in osteosarcoma preclinical models. Clin Cancer Res 19:2117–2131

    Article  CAS  PubMed  Google Scholar 

  12. Llombart-Bosch A, Lopez-Guerrero JA, Carda Batalla C et al (2003) Structural basis of tumoral angiogenesis. Adv Exp Med Biol 532:69–89

    Article  CAS  PubMed  Google Scholar 

  13. Pinto S, Martinez-Romero A, O’Connor JE et al (2014) Intracellular coexpression of CXC- and CC- chemokine receptors and their ligands in human melanoma cell lines and dynamic variations after xenotransplantation. BMC Cancer 14:118

    Article  PubMed Central  PubMed  Google Scholar 

  14. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  15. Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364

    Article  CAS  PubMed  Google Scholar 

  16. Ghesquiere B, Wong BW, Kuchnio A et al (2014) Metabolism of stromal and immune cells in health and disease. Nature 511:167–176

    Article  CAS  PubMed  Google Scholar 

  17. Baptista AM, Camargo AF, Filippi RZ et al (2014) Correlation between the expression of vegf and survival in osteosarcoma. Acta Ortop Bras 22:250–255

    Article  PubMed Central  PubMed  Google Scholar 

  18. Wu Q, Yang SH, Wang RY et al (2005) Effect of silencing HIF-1alpha by RNA interference on expression of vascular endothelial growth factor in osteosarcoma cell line SaOS-2 under hypoxia. Ai Zheng 24:531–535

    CAS  PubMed  Google Scholar 

  19. Ohba T, Cates JM, Cole HA et al (2014) Autocrine VEGF/VEGFR1 signaling in a subpopulation of cells associates with aggressive osteosarcoma. Mol Cancer Res 12:1100–1111

    Article  CAS  PubMed  Google Scholar 

  20. Berghuis D, Schilham MW, Santos SJ et al (2012) The CXCR4-CXCL12 axis in Ewing sarcoma: promotion of tumor growth rather than metastatic disease. Clin Sarcoma Res 2:24

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Issekutz AC, Quinn PJ, Lang B et al (2011) Coexpression of chemokine receptors CCR5, CXCR3, and CCR4 and ligands for P- and E-selectin on T lymphocytes of patients with juvenile idiopathic arthritis. Arthritis Rheum 63:3467–3476

    Article  CAS  PubMed  Google Scholar 

  22. Yamaguchi T, Ohshima K, Karube K et al (2006) Expression of chemokines and chemokine receptors in cutaneous CD30+ lymphoproliferative disorders. Br J Dermatol 154:904–909

    Article  CAS  PubMed  Google Scholar 

  23. van der Schaft DW, Seftor RE, Seftor EA et al (2004) Effects of angiogenesis inhibitors on vascular network formation by human endothelial and melanoma cells. J Natl Cancer Inst 96:1473–1477

    Article  PubMed  Google Scholar 

  24. Felgenhauer JL, Nieder ML, Krailo MD et al (2013) A pilot study of low-dose anti-angiogenic chemotherapy in combination with standard multiagent chemotherapy for patients with newly diagnosed metastatic Ewing sarcoma family of tumors: a Children’s Oncology Group (COG) Phase II study NCT00061893. Pediatr Blood Cancer 60:409–414

    Article  CAS  PubMed  Google Scholar 

  25. van der Schaft DW, Hillen F, Pauwels P et al (2005) Tumor cell plasticity in Ewing sarcoma, an alternative circulatory system stimulated by hypoxia. Cancer Res 65:11520–11528

    Article  PubMed  Google Scholar 

  26. Hurwitz H, Fehrenbacher L, Novotny W et al (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350:2335–2342

    Article  CAS  PubMed  Google Scholar 

  27. Hurwitz H (2004) Integrating the anti-VEGF-A humanized monoclonal antibody bevacizumab with chemotherapy in advanced colorectal cancer. Clin Colorectal Cancer 4(Suppl 2):S62–S68

    Article  CAS  PubMed  Google Scholar 

  28. Zhou W, Hao M, Du X et al (2014) Advances in targeted therapy for osteosarcoma. Discov Med 17:301–307

    PubMed  Google Scholar 

  29. Versleijen-Jonkers YM, Vlenterie M, van de Luijtgaarden AC et al (2014) Anti-angiogenic therapy, a new player in the field of sarcoma treatment. Crit Rev Oncol Hematol 91:172–185

    Article  PubMed  Google Scholar 

  30. Kaya M, Wada T, Nagoya S et al (2009) The level of vascular endothelial growth factor as a predictor of a poor prognosis in osteosarcoma. J Bone Joint Surg (Br) 91:784–788

    Article  CAS  Google Scholar 

  31. Mantadakis E, Kim G, Reisch J et al (2001) Lack of prognostic significance of intratumoral angiogenesis in nonmetastatic osteosarcoma. J Pediatr Hematol Oncol 23:286–289

    Article  CAS  PubMed  Google Scholar 

  32. Kreuter M, Bieker R, Bielack SS et al (2004) Prognostic relevance of increased angiogenesis in osteosarcoma. Clin Cancer Res 10:8531–8537

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants of the sixth FP of the EC: Prognosis and Therapeutic Targets in the Ewing Family of Tumors (PROTHETS), Contract number: 503036; and EuroBoNeT Network, contract number: 018814, and from the Fundación Instituto Valenciano de Oncología (FIVO), Valencia, Spain.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Llombart-Bosch.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 831 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giner, F., López-Guerrero, J.A., Machado, I. et al. The early stages of tumor angiogenesis in human osteosarcoma: a nude mice xenotransplant model. Virchows Arch 467, 193–201 (2015). https://doi.org/10.1007/s00428-015-1791-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-015-1791-y

Keywords

Navigation