Skip to main content
Log in

Are alterations of tight junctions at molecular and ultrastructural level different in duodenal biopsies of patients with celiac disease and Crohn's disease?

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Abnormalities of transmembrane and cytoplasmic proteins of tight junctions (TJ) have been implicated in pathogenesis of both celiac (CeD) and Crohn’s diseases (CD). Since disease pathogenesis in CeD and CD are different, we planned to study if there is any differential expression pattern of TJ marker proteins and ultrastructural changes, respectively, in duodenal villi vs crypts. Endoscopic duodenal biopsies from treatment naïve patients with CeD (n = 24), active CD (n = 28), and functional dyspepsia (as controls, n = 15), both at baseline and 6 months after treatment, were subjected to light microscopic analysis (modified Marsh grading); immune-histochemical staining and Western blot analysis to see the expression of key TJ proteins [trans-membrane proteins (claudin-2, claudin-3, claudin-4, occludin, and JAM) and cytoplasmic protein (ZO-1)]. Transmission electron microscopy and image analysis of the TJs were also performed. There was significant overexpression of claudin-2 (pore-forming) and occludin (protein maintaining cell polarity) with under-expression of claudin-3 and claudin-4 (pore-sealing proteins) in treatment naïve CeD and active CD with simultaneous alteration in ultrastructure of TJs such as loss of penta-laminar structure and TJ dilatation. Normalization of some of these TJ proteins was noted 6 months after treatment. These changes were not disease specific and were not different in duodenal villi and crypts. Overexpression of pore-forming and under-expression of pore-sealing TJ proteins lead to dilatation of TJ. These changes are neither disease specific nor site specific and the end result of mucosal inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Turner JR (2000) Show me the pathway! Regulation of paracellular permeability by Na (+)-glucose cotransport. Adv Drug Deliv Rev 41(3):265–281

    Article  PubMed  CAS  Google Scholar 

  2. Zhu A, Kaunitz J (2008) Gastroduodenal mucosal defense. Curr Gastroenterol Rep 10(6):548–554

    Article  PubMed  Google Scholar 

  3. Edelblum KL, Turner JR (2009) The tight junction in inflammatory disease: communication breakdown. Curr Opin Pharmacol 9(6):715–720

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Hollander D (1999) Intestinal permeability, leaky gut, and intestinal disorders. Curr Gastroenterol Rep 1(5):410–416

    Article  PubMed  CAS  Google Scholar 

  5. Fanning AS, Mitic LL, Anderson JM (1999) Transmembrane proteins in the tight junction barrier. J Am Soc Nephrol 10(6):1337–1345

    PubMed  CAS  Google Scholar 

  6. D’Incà R, Di Leo V, Corrao G, Martines D et al (1999) Intestinal permeability test as a predictor of clinical course in Crohn’s disease. Am J Gastroenterol 94(10):2956–2960

    Article  PubMed  Google Scholar 

  7. Rosenthal R, Milatz S, Krug SM, Oelrich B et al (2010) Claudin-2, a component of the tight junction, forms a paracellular water channel. J Cell Sci 123:1913–1921

    Article  PubMed  CAS  Google Scholar 

  8. Van Itallie CM, Holmes J, Bridges A, Anderson JM (2009) Claudin-2-dependent changes in noncharged solute flux are mediated by the extracellular domains and require attachment to the PDZ-scaffold. Ann N Y Acad Sci 1165:82–87

    Article  PubMed  PubMed Central  Google Scholar 

  9. Milatz S, Krug SM, Rosenthal R, Günzel D et al (2010) Claudin-3 acts as a sealing component of the tight junction for ions of either charge and uncharged solutes. Biochim Biophys Acta 1798(11):2048–2057

    Article  PubMed  CAS  Google Scholar 

  10. D’Souza T, Agarwal R, Morin PJ (2005) Phosphorylation of claudin-3 at threonine 192 by cAMP-dependent protein kinase regulates tight junction barrier function in ovarian cancer cells. J Biol Chem 280(28):26233–26240

    Article  PubMed  Google Scholar 

  11. Litkouhi B, Kwong J, Lo C-M, Smedley JG 3rd et al (2007) Claudin-4 over expression in epithelial ovarian cancer is associated with hypomethylation and is a potential target for modulation of tight junction barrier function using a C-terminal fragment of Clostridium perfringens enterotoxin. Neoplasia 9(4):304–314

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Van Itallie C, Rahner C, Anderson JM (2001) Regulated expression of claudin-4 decreases paracellular conductance through a selective decrease in sodium permeability. J Clin Invest 107(10):1319–1327

    Article  PubMed  PubMed Central  Google Scholar 

  13. Du D, Xu F, Yu L, Zhang C et al (2010) The tight junction protein, occludin, regulates the directional migration of epithelial cells. Dev Cell 18(1):52–63

    Article  PubMed  CAS  Google Scholar 

  14. Mandell KJ, Parkos CA (2005) The JAM family of proteins. Adv Drug Deliv Rev 57(6):857–867

    Article  PubMed  CAS  Google Scholar 

  15. Bazzoni G (2003) The JAM, family of junctional adhesion molecules. Curr Opin Cell Biol 15(5):525–530

    Article  PubMed  CAS  Google Scholar 

  16. Husby S, Koletzko S, Korponay-Szabó IR, Mearin ML et al (2012) European Society for Pediatric Gastroenterology, Hepatology, and Nutrition guidelines for the diagnosis of coeliac disease. J Pediatr Gastroenterol Nutr 54(1):136–160

    Article  PubMed  CAS  Google Scholar 

  17. Stange EF, Travis SPL, Vermeire S, Beglinger C et al (2006) European evidence based consensus on the diagnosis and management of Crohn’s disease: definitions and diagnosis. Gut 55(Suppl I):i1–i15

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sostegni R, Daperno M, Scaglione N, Lavagna A, Rocca R, Pera A (2003) Review article: Crohn’s disease: monitoring disease activity. Aliment PharmacolTher 17 (Suppl. 2): 11–17

  19. Marsh MN (1992) Gluten, major histocompatibility complex, and the small intestine. A molecular and immunobiologic approach to the spectrum of gluten sensitivity ('celiac sprue'). Gastroenterology 102:330–354

    PubMed  CAS  Google Scholar 

  20. Vilela EG, Torres HOG, Ferrari MLA, Lima AS, Cunha AS (2008) Gut permeability to lactulose and mannitol differs in treated Crohn’s disease and celiac disease patients and healthy subjects. Braz J Med Biol Res 41(12):1105–1109

    Article  PubMed  CAS  Google Scholar 

  21. Wright NA (2005) Morson and Dawson’s Gastrointestinal Pathology, 4th edn. Gut 54(4):568–568

    Article  PubMed Central  Google Scholar 

  22. Yu AS (2000) Paracellular solute transport: more than just a leak? Curr Opin Nephrol Hypertens 9(5):513–515

    Article  PubMed  CAS  Google Scholar 

  23. Szakál DN, Gyorffy H, Arató A, Cseh A et al (2010) Mucosal expression of claudins 2, 3 and 4 in proximal and distal part of duodenum in children with coeliac disease. Virchows Arch 456(3):245–250

    Article  PubMed  Google Scholar 

  24. Schumann M, Gunzel D, Buergel N, Richter JF et al (2012) Cell polarity-determining proteins Par-3 and PP-1 are involved in epithelial tight junction defects in coeliac disease. Gut 61(2):220–228

    Article  PubMed  CAS  Google Scholar 

  25. Schumann M, Kamel S, Pahlitzsch ML, Lebenheim L et al (2012) Defective tight junctions in refractory celiac disease. Ann N Y Acad Sci 1258:43–51

    Article  PubMed  CAS  Google Scholar 

  26. Veres G, Gyorffy H, Szakall DN, Szabo E et al (2007) Claudins expression in the proximal and distal parts of duodenum in patients with celiac disease. Z Gastroenterol 45:45–A117

    Google Scholar 

  27. Sapone A, Lammers KM, Casolaro V, Cammarota M et al (2011) Divergence of gut permeability and mucosal immune gene expression in two gluten-associated conditions: celiac disease and gluten sensitivity. BMC Med 9:23

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Zeissig S, Bürgel N, Günzel D, Richter J et al (2007) Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn’s disease. Gut 56(1):61–72

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Weber CR, Nalle SC, Tretiakova M, Rubin DT, Turner JR (2008) Claudin-1 and claudin-2 expression is elevated in inflammatory bowel disease and may contribute to early neoplastic transformation. Lab Investig 88(10):1110–1120

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Suzuki T, Yoshinaga N, Tanabe S (2011) Interleukin-6 (IL-6) regulates claudin-2 expression and tight junction permeability in intestinal epithelium. J Biol Chem 286:31263–31271

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Vogelsang H, Schwarzenhofer M, Oberhuber G (1998) Changes in gastrointestinal permeability in celiac disease. Dig Dis 16(6):333–336

    Article  PubMed  CAS  Google Scholar 

  32. Ma TY, Boivin MA, Ye D, Pedram A, Said HM (2005) Mechanism of TNF-{alpha} modulation of Caco-2 intestinal epithelial tight junction barrier: role of myosin light-chain kinase protein expression. Am J Physiol Gastrointest Liver Physiol 288(3):G422–G430

    Article  PubMed  CAS  Google Scholar 

  33. Montalto M, Cuoco L, Ricci R, Maggiano N, Vecchio FM, Gasbarrini G (2002) Immunohistochemical analysis of ZO-1 in the duodenal mucosa of patients with untreated and treated celiac disease. Digestion 65(4):227–233

    Article  PubMed  CAS  Google Scholar 

  34. Pizzuti D, Bortolami M, Mazzon E, Buda A et al (2004) Transcriptional downregulation of tight junction protein ZO-1 in active coeliac disease is reversed after a gluten-free diet. Dig Liver Dis 36(5):337–341

    Article  PubMed  CAS  Google Scholar 

  35. Drago S, El Asmar R, Di Pierro M, Grazia Clemente M et al (2006) Gliadin, zonulin and gut permeability: Effects on celiac and non-celiac intestinal mucosa and intestinal cell lines. Scand J Gastroenterol 41(4):408–419

    Article  PubMed  CAS  Google Scholar 

  36. Sadi RA, Khatib K, Guo S, Ye D, Youssef M, Ma T (2011) Occludin regulates macromolecule flux across the intestinal epithelial tight junction barrier. Am J Physiol Gastrointest Physiol 300(6):G1054–G1064

    Article  Google Scholar 

  37. Vetrano S, Resciqno M, Cera MR, Correale C et al (2008) Unique role of junctional adhesion molecule-a in maintaining mucosal homeostasis in inflammatory bowel disease. Gastroenterology 135(1):173–184

    Article  PubMed  CAS  Google Scholar 

  38. Söderholm JD, Olaison G, Peterson KH, Franzén LE et al (2002) Augmented increase in tight junction permeability by luminal stimuli in the non-inflamed ileum of Crohn’s disease. Gut 50(3):307–313

    Article  PubMed  PubMed Central  Google Scholar 

  39. Benjamin J, Makharia GK, Ahuja V, Kalaivani M, Joshi YK (2008) Intestinal permeability and its association with the patient and disease characteristics in Crohn’s disease. World J Gastroenterol 14(9):1399–1405

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bjarnason I, Peters TJ, Veall N (1983) Intestinal permeability defect in coeliac disease. Lancet 1(8336):1284–1285

    Article  PubMed  CAS  Google Scholar 

  41. Lameris AL, Huybers S, Kaukinen K, Mäkelä TH et al (2013) Expression profiling of claudins in the human gastrointestinal tract in health and during inflammatory bowel disease. Scandinavian J Gastroenterol 68:58–59. doi:10.3109/00365521.2012.741616

    Article  Google Scholar 

  42. Das P, Goswami P, Das TK, Nag T et al (2012) Comparative tight junction protein expressions in colonic Crohn's disease, ulcerative colitis and tuberculosis: a new perspective. Virchows Arch 460(3):261–270

    Article  PubMed  CAS  Google Scholar 

  43. Fasano A, Uzzau S, Fiore C, Margaretten K (1997) The enterotoxic effect on zonula occludens toxin on rabbit small intestine involves the paracellular pathway. Gastroenterology 112:839–846

    Article  PubMed  CAS  Google Scholar 

  44. Lammers KM, Lu R, Brownley J, Thomas K et al (2008) Gliadin induces an increase in intestinal permeability and zonulin release by binding to the chemokine receptor CXCR3. Gastroenterology 135:194–204

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Paterson BM, Lammers KM, Arrieta MC, Fasano A, Meddings JB (2007) The safety, tolerance, pharmacokinetic and pharmacodynamic effects of single doses of AT-1001 in coeliac disease subjects: a proof of concept study. Aliment Pharmacol Ther 26:757–766

    Article  PubMed  CAS  Google Scholar 

  46. Kelly CP, Green PHR, Murray JA, Di Marino A et al (2009) Effect of larazotide acetate on the prevention of signs and symptoms of coeliac disease in patients undergoing a gluten challenge: a randomised placebo-controlled study. Gastroenterology 136:M2048

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Department of Science and Technology, Government of India, for providing grant for this study. We also express our gratitude to all the patients who participated in this study.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Govind K. Makharia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goswami, P., Das, P., Verma, A.K. et al. Are alterations of tight junctions at molecular and ultrastructural level different in duodenal biopsies of patients with celiac disease and Crohn's disease?. Virchows Arch 465, 521–530 (2014). https://doi.org/10.1007/s00428-014-1651-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-014-1651-1

Keywords

Navigation