Skip to main content

Advertisement

Log in

Expression pattern of clinically relevant markers in paediatric germ cell- and sex-cord stromal tumours is similar to adult testicular tumours

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Paediatric germ cell tumours (GCTs) are rare and account for less than 3 % of childhood cancers. Like adult GCTs, they probably originate from primordial germ cells, but the pattern of histopathological types is different, and they occur predominantly in extragonadal sites along the body midline. Because they are rare, histology of paediatric GCTs is poorly documented, and it remains unclear to what extent they differ from adult GCTs. We have analysed 35 paediatric germ cell tumours and 5 gonadal sex-cord stromal tumours from prepubertal patients aged 0–15 years, to gain further knowledge, elaborate on clinical-pathological associations and better understand their developmental divergence. The tumours were screened for expression of stemness-related factors (OCT4, AP-2γ, SOX2), classical yolk sac tumours (YSTs; AFP, SALL4), GCTs (HCG, PLAP, PDPN/D2-40), as well as markers for sex-cord stromal tumour (PDPN, GATA4). All YSTs expressed AFP and SALL4, with GATA4 present in 13/14. The majority of teratomas expressed SOX2 and PDPN, whereas SALL4 was found in 8/13 immature teratomas. Adult seminoma markers AP-2γ, OCT4, SALL4 and PDPN were all expressed in dysgerminoma. We further report a previously unrecognised pathogenetic relationship between AFP and SALL4 in YST in that different populations of YST cells express either SALL4 or AFP, which suggests variable differentiation status. We also show that AP-2γ is expressed in the granulosa layer of ovarian follicles and weakly expressed in immature but not in mature granulosa cell tumours. Our findings indicate that the expression pattern of these antigens is similar between paediatric and adult GCTs, even though they develop along different developmental trajectories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Oosterhuis JW, Looijenga LH (2005) Testicular germ-cell tumours in a broader perspective. Nat Rev Cancer 5:210–222

    Article  PubMed  CAS  Google Scholar 

  2. Jorgensen N, Muller J, Giwercman A, Visfeldt J, Moller H, Skakkebaek NE (1995) DNA content and expression of tumour markers in germ cells adjacent to germ cell tumours in childhood: probably a different origin for infantile and adolescent germ cell tumours. J Pathol 176:269–278

    Article  PubMed  CAS  Google Scholar 

  3. Soosay GN, Bobrow L, Happerfield L, Parkinson MC (1991) Morphology and immunohistochemistry of carcinoma in situ adjacent to testicular germ cell tumours in adults and children: implications for histogenesis. Histopathology 19:537–544

    Article  PubMed  CAS  Google Scholar 

  4. Skakkebaek NE (1972) Possible carcinoma–in-situ of the testis. Lancet 2:516–517

    Article  PubMed  CAS  Google Scholar 

  5. Rajpert-De Meyts E (2006) Developmental model for the pathogenesis of testicular carcinoma in situ: genetic and environmental aspects. Hum Reprod Update 12:303–323

    Article  PubMed  CAS  Google Scholar 

  6. Scully RE (1970) Gonadoblastoma. A review of 74 cases. Cancer 25:1340–1356

    Article  PubMed  CAS  Google Scholar 

  7. Pleskacova J, Hersmus R, Oosterhuis JW, Setyawati BA, Faradz SM, Cools M, Wolffenbuttel KP, Lebl J, Drop SL, Looijenga LH (2010) Tumor risk in disorders of sex development. Sex Dev 4:259–269

    Article  PubMed  CAS  Google Scholar 

  8. Blomberg Jensen M, Nielsen JE, Jorgensen A, Rajpert-De Meyts E, Kristensen DM, Jorgensen N, Skakkebaek NE, Juul A, Leffers H (2010) Vitamin D receptor and vitamin D metabolizing enzymes are expressed in the human male reproductive tract. Hum Reprod 25:1303–1311

    Article  PubMed  CAS  Google Scholar 

  9. Svingen T, Francois M, Wilhelm D, Koopman P (2012) Three-dimensional imaging of Prox1-EGFP transgenic mouse gonads reveals divergent modes of lymphangiogenesis in the testis and ovary. PLoS One 7:e52620

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Cao D, Li J, Guo CC, Allan RW, Humphrey PA (2009) SALL4 is a novel diagnostic marker for testicular germ cell tumors. Am J Surg Pathol 33:1065–1077

    Article  PubMed  Google Scholar 

  11. Camparo P, Comperat EM (2013) SALL4 is a useful marker in the diagnostic work-up of germ cell tumors in extra-testicular locations. Virchows Arch 462:337–341

    Article  PubMed  CAS  Google Scholar 

  12. Cao D, Humphrey PA, Allan RW (2009) SALL4 is a novel sensitive and specific marker for metastatic germ cell tumors, with particular utility in detection of metastatic yolk sac tumors. Cancer 115:2640–2651

    Article  PubMed  CAS  Google Scholar 

  13. Miettinen M, McCue PA, Sarlomo-Rikala M, Rys J, Czapiewski P, Wazny K, Langfort R, Waloszczyk P, Biernat W, Lasota J, Wang Z (2014) GATA3: a multispecific but potentially useful marker in surgical pathology: a systematic analysis of 2500 epithelial and nonepithelial tumors. Am J Surg Pathol 38:13–22

    Article  PubMed  Google Scholar 

  14. Fujimoto M, Sumiyoshi S, Yoshizawa A, Sonobe M, Kobayashi M, Moriyoshi K, Kido A, Tanaka C, Koyanagi I, Date H, Haga H (2014) SALL4 immunohistochemistry in non-small-cell lung carcinomas. Histopathology 64:309–311

    Article  PubMed  Google Scholar 

  15. Ushiku T, Shinozaki A, Shibahara J, Iwasaki Y, Tateishi Y, Funata N, Fukayama M (2010) SALL4 represents fetal gut differentiation of gastric cancer, and is diagnostically useful in distinguishing hepatoid gastric carcinoma from hepatocellular carcinoma. Am J Surg Pathol 34:533–540

    Article  PubMed  Google Scholar 

  16. Bai S, Wei S, Ziober A, Yao Y, Bing Z (2013) Expression of SALL4 and SF-1 in gonadoblastoma: useful markers in the identification of the invasive germ cell component. Int J Gynecol Pathol 32:379–383

    Article  PubMed  CAS  Google Scholar 

  17. Mei K, Liu A, Allan RW, Wang P, Lane Z, Abel TW, Wei L, Cheng H, Guo S, Peng Y, Rakheja D, Wang M, Ma J, Rodriguez MM, Li J, Cao D (2009) Diagnostic utility of SALL4 in primary germ cell tumors of the central nervous system: a study of 77 cases. Mod Pathol 22:1628–1636

    Article  PubMed  CAS  Google Scholar 

  18. Liu A, Cheng L, Du J, Peng Y, Allan RW, Wei L, Li J, Cao D (2010) Diagnostic utility of novel stem cell markers SALL4, OCT4, NANOG, SOX2, UTF1, and TCL1 in primary mediastinal germ cell tumors. Am J Surg Pathol 34:697–706

    PubMed  Google Scholar 

  19. Rabban JT, Zaloudek CJ (2013) A practical approach to immunohistochemical diagnosis of ovarian germ cell tumours and sex cord-stromal tumours. Histopathology 62:71–88

    Article  PubMed  Google Scholar 

  20. Norgaard-Pedersen B, Albrechtsen R, Teilum G (1975) Serum alpha-foetoprotein as a marker for endodermal sinus tumour (yolk sac tumour) or a vitelline component of "teratocarcinoma". Acta Pathol Microbiol Scand A 83:573–589

    PubMed  CAS  Google Scholar 

  21. Nogales FF, Preda O, Nicolae A (2012) Yolk sac tumours revisited A review of their many faces and names. Histopathology 60:1023–1033

    Article  PubMed  Google Scholar 

  22. Rosner MH, Vigano MA, Ozato K, Timmons PM, Poirier F, Rigby PW, Staudt LM (1990) A POU-domain transcription factor in early stem cells and germ cells of the mammalian embryo. Nature 345:686–692

    Article  PubMed  CAS  Google Scholar 

  23. Looijenga LH, Stoop H, de Leeuw HP, de Gouveia Brazao CA, Gillis AJ, van Roozendaal KE, van Zoelen EJ, Weber RF, Wolffenbuttel KP, van Dekken H, Honecker F, Bokemeyer C, Perlman EJ, Schneider DT, Kononen J, Sauter G, Oosterhuis JW (2003) POU5F1 (OCT3/4) identifies cells with pluripotent potential in human germ cell tumors. Cancer Res 63:2244–2250

    PubMed  CAS  Google Scholar 

  24. Salonen J, Leminen A, Stenman UH, Butzow R, Heikinheimo M, Heikinheimo O (2008) Tissue AP-2gamma and Oct-3/4, and serum CA 125 as diagnostic and prognostic markers of malignant ovarian germ cell tumors. Tumour Biol 29:50–56

    Article  PubMed  CAS  Google Scholar 

  25. Hoei-Hansen CE, Kraggerud SM, Abeler VM, Kaern J, Rajpert-De Meyts E, Lothe RA (2007) Ovarian dysgerminomas are characterised by frequent KIT mutations and abundant expression of pluripotency markers. Mol Cancer 6:12

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hoei-Hansen CE, Nielsen JE, Almstrup K, Sonne SB, Graem N, Skakkebaek NE, Leffers H, Rajpert-De Meyts E (2004) Transcription factor AP-2gamma is a developmentally regulated marker of testicular carcinoma in situ and germ cell tumors. Clin Cancer Res 10:8521–8530

    Article  PubMed  CAS  Google Scholar 

  27. Guttormsen J, Koster MI, Stevens JR, Roop DR, Williams T, Winger QA (2008) Disruption of epidermal specific gene expression and delayed skin development in AP-2 gamma mutant mice. Dev Biol 317:187–195

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Takahashi H, Oyama N, Itoh Y, Ishida-Yamamoto A, Kaneko F, Iizuka H (2000) Transcriptional factor AP-2gamma increases human cystatin A gene transcription of keratinocytes. Biochem Biophys Res Commun 278:719–723

    Article  PubMed  CAS  Google Scholar 

  29. Sonne SB, Perrett RM, Nielsen JE, Baxter MA, Kristensen DM, Leffers H, Hanley NA, Rajpert-De-Meyts E (2010) Analysis of SOX2 expression in developing human testis and germ cell neoplasia. Int J Dev Biol 54:755–760

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Perrett RM, Turnpenny L, Eckert JJ, O'Shea M, Sonne SB, Cameron IT, Wilson DI, Rajpert-De Meyts E, Hanley NA (2008) The early human germ cell lineage does not express SOX2 during in vivo development or upon in vitro culture. Biol Reprod 78:852–858

    Article  PubMed  CAS  Google Scholar 

  31. Korkola JE, Houldsworth J, Chadalavada RS, Olshen AB, Dobrzynski D, Reuter VE, Bosl GJ, Chaganti RS (2006) Down-regulation of stem cell genes, including those in a 200-kb gene cluster at 12p13.31, is associated with in vivo differentiation of human male germ cell tumors. Cancer Res 66:820–827

    Article  PubMed  CAS  Google Scholar 

  32. Phi JH, Park SH, Paek SH, Kim SK, Lee YJ, Park CK, Cho BK, Lee DH, Wang KC (2007) Expression of Sox2 in mature and immature teratomas of central nervous system. Mod Pathol 20:742–748

    Article  PubMed  CAS  Google Scholar 

  33. de Jong J, Stoop H, Gillis AJ, van Gurp RJ, van de Geijn GJ, Boer M, Hersmus R, Saunders PT, Anderson RA, Oosterhuis JW, Looijenga LH (2008) Differential expression of SOX17 and SOX2 in germ cells and stem cells has biological and clinical implications. J Pathol 215:21–30

    Article  PubMed  Google Scholar 

  34. Cheng L, Zhang S, Talerman A, Roth LM (2010) Morphologic, immunohistochemical, and fluorescence in situ hybridization study of ovarian embryonal carcinoma with comparison to solid variant of yolk sac tumor and immature teratoma. Hum Pathol 41:716–723

    Article  PubMed  CAS  Google Scholar 

  35. Salonen J, Rajpert-De Meyts E, Mannisto S, Nielsen JE, Graem N, Toppari J, Heikinheimo M (2010) Differential developmental expression of transcription factors GATA-4 and GATA-6, their cofactor FOG-2 and downstream target genes in testicular carcinoma in situ and germ cell tumors. Eur J Endocrinol 162:625–631

    Article  PubMed  CAS  Google Scholar 

  36. Laitinen MP, Anttonen M, Ketola I, Wilson DB, Ritvos O, Butzow R, Heikinheimo M (2000) Transcription factors GATA-4 and GATA-6 and a GATA family cofactor, FOG-2, are expressed in human ovary and sex cord-derived ovarian tumors. J Clin Endocrinol Metab 85:3476–3483

    PubMed  CAS  Google Scholar 

  37. Eggers S, Sinclair A (2012) Mammalian sex determination—insights from humans and mice. Chromosome Res 20:215–238

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Virgone C, Cecchetto G, Ferrari A, Bisogno G, Donofrio V, Boldrini R, Collini P, Dall'Igna P, Alaggio R (2012) GATA-4 and FOG-2 expression in pediatric ovarian sex cord-stromal tumors replicates embryonal gonadal phenotype: results from the TREP project. PLoS One 7:e45914

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Ketola I, Pentikainen V, Vaskivuo T, Ilvesmaki V, Herva R, Dunkel L, Tapanainen JS, Toppari J, Heikinheimo M (2000) Expression of transcription factor GATA-4 during human testicular development and disease. J Clin Endocrinol Metab 85:3925–3931

    PubMed  CAS  Google Scholar 

  40. Siltanen S, Anttonen M, Heikkila P, Narita N, Laitinen M, Ritvos O, Wilson DB, Heikinheimo M (1999) Transcription factor GATA-4 is expressed in pediatric yolk sac tumors. Am J Pathol 155:1823–1829

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Franke FE, Pauls K, Rey R, Marks A, Bergmann M, Steger K (2004) Differentiation markers of Sertoli cells and germ cells in fetal and early postnatal human testis. Anat Embryol (Berl) 209:169–177

    CAS  Google Scholar 

  42. Sonne SB, Herlihy AS, Hoei-Hansen CE, Nielsen JE, Almstrup K, Skakkebaek NE, Marks A, Leffers H, Rajpert-De Meyts E (2006) Identity of M2A (D2-40) antigen and gp36 (Aggrus, T1A-2, podoplanin) in human developing testis, testicular carcinoma in situ and germ-cell tumours. Virchows Arch 449:200–206

    Article  PubMed  CAS  Google Scholar 

  43. Chang MC, Vargas SO, Hornick JL, Hirsch MS, Crum CP, Nucci MR (2009) Embryonic stem cell transcription factors and D2-40 (podoplanin) as diagnostic immunohistochemical markers in ovarian germ cell tumors. Int J Gynecol Pathol 28:347–355

    Article  PubMed  CAS  Google Scholar 

  44. Lau SK, Weiss LM, Chu PG (2007) D2-40 immunohistochemistry in the differential diagnosis of seminoma and embryonal carcinoma: a comparative immunohistochemical study with KIT (CD117) and CD30. Mod Pathol 20:320–325

    Article  PubMed  CAS  Google Scholar 

  45. Mishima K, Kato Y, Kaneko MK, Nakazawa Y, Kunita A, Fujita N, Tsuruo T, Nishikawa R, Hirose T, Matsutani M (2006) Podoplanin expression in primary central nervous system germ cell tumors: a useful histological marker for the diagnosis of germinoma. Acta Neuropathol 111:563–568

    Article  PubMed  CAS  Google Scholar 

  46. Fukunaga M (2005) Expression of D2-40 in lymphatic endothelium of normal tissues and in vascular tumours. Histopathology 46:396–402

    Article  PubMed  CAS  Google Scholar 

  47. Josso N (1992) Anti-mullerian hormone and Sertoli cell function. Horm Res 38(Suppl 2):72–76

    Article  PubMed  Google Scholar 

  48. Baumal R, Bailey D, Giwercman A, Skakkebaek N, Stratis M, Marks A (1989) A novel maturation marker for human Sertoli cells. Int J Androl 12:354–359

    Article  PubMed  CAS  Google Scholar 

  49. Jacobsen GK, Norgaard-Pedersen B (1984) Placental alkaline phosphatase in testicular germ cell tumours and in carcinoma-in-situ of the testis. An immunohistochemical study. Acta Pathol Microbiol Immunol Scand A 92:323–329

    PubMed  CAS  Google Scholar 

  50. Baker MA, Aitken RJ (2005) Reactive oxygen species in spermatozoa: methods for monitoring and significance for the origins of genetic disease and infertility. Reprod Biol Endocrinol 3:67

    Article  PubMed  PubMed Central  Google Scholar 

  51. Collinson K, Murray MJ, Orsi NM, Cummings M, Shipley J, Joffe JK, Coleman N, Stark D (2014) Age-related biological features of germ cell tumors. Gene Chromosome Cancer 53:215–227

    Article  CAS  Google Scholar 

  52. Palmer RD, Foster NA, Vowler SL, Roberts I, Thornton CM, Hale JP, Schneider DT, Nicholson JC, Coleman N (2007) Malignant germ cell tumours of childhood: new associations of genomic imbalance. Br J Cancer 96:667–676

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Golas MM, Gunawan B, Raab BW, Fuzesi L, Lange B (2010) Malignant transformation of an untreated congenital sacrococcygeal teratoma: a amplification at 8q and 12p detected by comparative genomic hybridization. Cancer Genet Cytogenet 197:95–98

    Article  PubMed  CAS  Google Scholar 

  54. Gurda GT, VandenBussche CJ, Yonescu R, Gonzalez-Roibon N, Ellis CL, Batista DA, Netto GJ (2014) Sacrococcygeal teratomas: clinico-pathological characteristics and isochromosome 12p status. Mod Pathol 27:562–568

    Article  PubMed  CAS  Google Scholar 

  55. Zahn S, Sievers S, Alemazkour K, Orb S, Harms D, Schulz WA, Calaminus G, Gobel U, Schneider DT (2006) Imbalances of chromosome arm 1p in pediatric and adult germ cell tumors are caused by true allelic loss: a combined comparative genomic hybridization and microsatellite analysis. Gene Chromosome Cancer 45:995–1006

    Article  CAS  Google Scholar 

  56. Mosbech CH, Rechnitzer C, Brok JS, Rajpert-De Meyts E, Hoei-Hansen CE (2014) Recent advances in understanding the etiology and pathogenesis of pediatric germ cell tumors. J Pediatr Hematol Oncol 36:263–270

    Article  PubMed  CAS  Google Scholar 

  57. Murray MJ, Halsall DJ, Hook CE, Williams DM, Nicholson JC, Coleman N (2011) Identification of microRNAs From the miR-371 ~ 373 and miR-302 clusters as potential serum biomarkers of malignant germ cell tumors. Am J Clin Pathol 135:119–125

    Article  PubMed  CAS  Google Scholar 

  58. Wang F, Liu A, Peng Y, Rakheja D, Wei L, Xue D, Allan RW, Molberg KH, Li J, Cao D (2009) Diagnostic utility of SALL4 in extragonadal yolk sac tumors: an immunohistochemical study of 59 cases with comparison to placental-like alkaline phosphatase, alpha-fetoprotein, and glypican-3. Am J Surg Pathol 33:1529–1539

    Article  PubMed  Google Scholar 

  59. Talebagha S, Rizk C, Elawabdeh N, Abramowsky CR, Shehata BM (2013) Usefulness of OCT4/3 immunostain in pediatric malignant germ cell tumors. Fetal Pediatr Pathol 32:82–87

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Håkansson and C. Campen for technical support and Dr Jesper Sune Brok for useful comments. We are grateful to Drs. R. Cate (Biogen) and G. Spagnoli (University of Basel) for providing antibodies against AMH and MAGE-A4, respectively. This work was supported by the Danish Cancer Society (No. R64-A3702-12-S7), the Danish Child Cancer Foundation (No. 2010-39 and 2013-16) and the Research Fund at Rigshospitalet (grant 9615.06.1.15).

Author contribution

CEHH, ERM and CR conceived and planned the study. BGT and BLP performed pathological revision. CHM, JEN and TS designed and performed the experiments. CHM, TS, JEN and CEHH evaluated IHC and IF. CHM and CEHH collected clinical data. All authors contributed to writing and revising the paper.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Engel Hoei-Hansen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mosbech, C.H., Svingen, T., Nielsen, J.E. et al. Expression pattern of clinically relevant markers in paediatric germ cell- and sex-cord stromal tumours is similar to adult testicular tumours. Virchows Arch 465, 567–577 (2014). https://doi.org/10.1007/s00428-014-1635-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-014-1635-1

Keywords

Navigation