Skip to main content
Log in

Xenopus laevis neuronal cell adhesion molecule (nrcam): plasticity of a CAM in the developing nervous system

  • Sequence Corner
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

Neuron-glial-related cell adhesion molecule (NRCAM) is a neuronal cell adhesion molecule of the L1 immunoglobulin superfamily, which plays diverse roles during nervous system development including axon growth and guidance, synapse formation, and formation of the myelinated nerve. Perturbations in NRCAM function cause a wide variety of disorders, which can affect wiring and targeting of neurons, or cause psychiatric disorders as well as cancers through abnormal modulation of signaling events. In the present study, we characterize the Xenopus laevis homolog of nrcam. Expression of Xenopus nrcam is most abundant along the dorsal midline throughout the developing brain and in the outer nuclear layer of the retina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bonora E, Lamb JA, Barnby G, Sykes N, Moberly T, Beyer KS, Klauck SM, Poustka F, Bacchelli E, Blasi F et al (2005) Mutation screening and association analysis of six candidate genes for autism on chromosome 7q. Eur J Hum Genet 13:198–207

    Article  CAS  PubMed  Google Scholar 

  • Brand Y, Sung M, Pak K, Chavez E, Wei E, Radojevic V, Bodmer D, Ryan AF (2014) Neural cell adhesion molecule NrCAM is expressed in the mammalian inner ear and modulates spiral ganglion neurite outgrowth in an in vitro alternate choice assay. J Mol Neurosci 55:836–844

    Article  PubMed  PubMed Central  Google Scholar 

  • Brümmendorf T, Rathjen FG (1996) Structure/function relationships of axon-associated adhesion receptors of the immunoglobin superfamily. Curr Opin Neurobiol 6:584–593

    Article  PubMed  Google Scholar 

  • Fitzli D, Stoeckli ET, Kunz S, Siribour K, Rader C, Kunz B, Kozlov SV, Buchstaller A, Lane RP, Suter DM et al (2000) A direct interaction of axonin-1 with NgCAM-related cell adhesion molecule (NrCAM) results in guidance, but not growth of commissural axons. J Cell Biol 149:951–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grumet M, Mauro V, Burgoon MP, Edelman GM, Cunningham BA (1991) Structure of a new nervous system glycoprotein, Nr-CAM, and its relationship to subgroups of neural cell adhesion molecules. J Cell Biol 113:1399–1412

    Article  CAS  PubMed  Google Scholar 

  • Heyden A, Angenstein F, Sallaz M, Seidenbecher C, Montag D (2008) Abnormal axonal guidance and brain anatomy in mouse mutants for the cell recognition molecules close homolog of L1 and NgCAM-related cell adhesion molecule. Neuroscience 155:221–233

    Article  CAS  PubMed  Google Scholar 

  • Hollemann T, Chen Y, Grunz H, Pieler T (1998) Regionalized metabolic activity establishes boundaries of retinoic acid signalling. EMBO J. 17(24):7361–72

  • Hollemann T, Pieler T (1999) Xpitx-1: a homeobox gene expressed during pituitary and cement gland formation of Xenopus embryos. Mech Dev. 88(2):249–52

  • Hortsch M (2000) Structural and functional evolution of the L1 family: are four adhesion molecules better than one? Mol Cell Neurosci 15:1–10

    Article  CAS  PubMed  Google Scholar 

  • Hutcheson HB, Olson LM, Bradford Y, Folstein SE, Santangelo SL, Sutcliffe JS, Haines JL (2004) Examination of NRCAM, LRRN3, KIAA0716, and LAMB1 as autism candidate genes. BMC Med Genet 5:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Ishiguro H, Liu Q-R, Gong J-P, Hall FS, Ujike H, Morales M, Sakurai T, Grumet M, Uhl GR (2006) NrCAM in addiction vulnerability: positional cloning, drug-regulation, haplotype-specific expression, and altered drug reward in knockout mice. Neuropsychopharmacology 31:572–584

    Article  CAS  PubMed  Google Scholar 

  • Ishiguro H, Hall FS, Horiuchi Y, Sakurai T, Hishimoto A, Grumet M, Uhl GR, Onaivi ES, Arinami T (2012) NrCAM-regulating neural systems and addiction-related behaviors: NrCAM and addiction. Addict Biol 19:343–353

    Article  PubMed  PubMed Central  Google Scholar 

  • Julien F, Bechara A, Fiore R, Nawabi H, Zhou H, Hoyo-Becerra C, Bozon M, Rougon G, Grumet M, Püschel AW et al (2005) Dual functional activity of semaphorin 3B is required for positioning the anterior commissure. Neuron 48:63–75

    Article  CAS  PubMed  Google Scholar 

  • Kayyem JF, Roman JM, de la Rosa EJ, Schwarz U, Dreyer WJ (1992) Bravo/Nr-CAM is closely related to the cell adhesion molecules L1 and Ng-CAM and has a similar heterodimer structure. J Cell Biol 118:1259–1270

    Article  CAS  PubMed  Google Scholar 

  • Krushel LA, Prieto BA, Cunningham BA, Edelman GM (1993) Expression patterns of the cell adhesion molecule Nr-CAM during histogenesis of the chick nervous system. Neuroscience 53:797–812

    Article  CAS  PubMed  Google Scholar 

  • Kuwajima T, Yoshida Y, Takegahara N, Petros TJ, Kumanogoh A, Jessell TM, Sakurai T, Mason C (2012) Optic chiasm presentation of Semaphorin6D in the context of Plexin-A1 and Nr-CAM promotes retinal axon midline crossing. Neuron 74:676–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lane RP, Chen X-N, Yamakawa K, Vielmetter J, Korenberg JR, Dreyer WJ (1996) Characterization of a highly conserved human homolog to the chicken neural cell surface protein Bravo/Nr-CAM that maps to chromosome band 7q31. Genomics 35:456–465

    Article  CAS  PubMed  Google Scholar 

  • Lustig M, Sakurai T, Grumet M (1999) Nr-CAM promotes neurite outgrowth from peripheral ganglia by a mechanism involving axonin-1 as a neural receptor. Dev Biol 209:340–351

    Article  CAS  PubMed  Google Scholar 

  • Lustig M, Erskine L, Mason CA, Grumet M, Sakurai T (2001a) Nr-CAM expression in the developing mouse nervous system: ventral midline structures, specific fiber tracts, and neuropilar regions. J Comp Neurol 434:13–28

    Article  CAS  PubMed  Google Scholar 

  • Lustig M, Zanazzi G, Sakurai T, Blanco C, Levinson SR, Lambert S, Grumet M, Salzer JL (2001b) Nr-CAM and neurofascin interactions regulate ankyrin G and sodium channel clustering at the node of Ranvier. Curr Biol 11:1864–1869

    Article  CAS  PubMed  Google Scholar 

  • Mauro VP, Krushel LA, Cunningham BA, Edelman GM (1992) Homophilic and heterophilic binding activities of Nr-CAM, a nervous system cell adhesion molecule. J Cell Biol 119:191–202

    Article  CAS  PubMed  Google Scholar 

  • Nieuwkoop PD, Faber J (1967) Normal table of xenopus laevis (Daudin). North Holland, Amsterdam

  • Suter DM, Pollerberg GE, Buchstaller A, Giger RJ, Dreyer WJ, Sonderegger P (1995) Binding between the neural cell adhesion molecules axonin-1 and Nr-CAM/Bravo is involved in neuron-glia interaction. J Cell Biol 131:1067–1081

    Article  CAS  PubMed  Google Scholar 

  • Volkmer H, Leuschner R, Zacharias U, Rathjen FG (1996) Neurofascin induces neurites by heterophilic interactions with axonal NrCAM while NrCAM requires F11 on the axonal surface to extend neurites. J Cell Biol 135:1059–1069

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Williams H, Du J-S, Jonathan T, Kenwrick S (1998) Alternative splicing of human nrcam in neural and nonneural tissues. Mol Cell Neurosci 10:287–295

    Article  CAS  Google Scholar 

  • Wang X, Zhang W, Cheever T, Schwarz V, Opperman K, Hutter H, Koepp D, Chen L (2008) The C. elegans L1CAM homologue LAD-2 functions as a coreceptor in MAB-20/Sema2 mediated axon guidance. J. Cell Biol 180:233–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams SE, Grumet M, Colman DR, Henkemeyer M, Mason CA, Sakurai T (2006) A role for Nr-CAM in the patterning of binocular visual pathways. Neuron 50:535–547

    Article  CAS  PubMed  Google Scholar 

  • Zelina P, Avci HX, Thelen K, Pollerberg GE (2005) The cell adhesion molecule NrCAM is crucial for growth cone behaviour and pathfinding of retinal ganglion cell axons. Development 132:3609–3618

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Hollemann.

Additional information

Communicated by Caroline Brennan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lokapally, A., Metikala, S. & Hollemann, T. Xenopus laevis neuronal cell adhesion molecule (nrcam): plasticity of a CAM in the developing nervous system. Dev Genes Evol 227, 61–67 (2017). https://doi.org/10.1007/s00427-016-0569-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-016-0569-9

Keywords

Navigation