Skip to main content

Advertisement

Log in

Protein expression profiling in head fragments during planarian regeneration after amputation

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

Following amputation, a planarian tail fragment can regrow into a complete organism including a well-organized brain within about 2–3 weeks, thus restoring the structure and function to presurgical levels. Despite the enormous potential of these animals for regenerative medicine, our understanding of the exact mechanism of planarian regeneration is incomplete. To better understand the molecular nature of planarian head regeneration, we applied two-dimensional electrophoresis (2-DE)/matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF)/time-of-flight mass spectrometry (TOF MS) technique to analyze the dynamic proteomic expression profiles over the course of 6 to 168 h post-decapitation. This approach identified a total of 141 differentially expressed proteins, 47 of which exhibited exceptionally high fold changes (≥3-fold change). Of these, Rx protein, an important regulator of head and brain development, was considered to be closely related to planarian head regeneration because of its exceptional high expression almost throughout the time course of regeneration process. Functional annotation analysis classified the 141 proteins into eight categories: (1) signaling, (2) Ca2+ binding and translocation, (3) transcription and translation, (4) cytoskeleton, (5) metabolism, (6) cell protection, (7) tissue differentiation, and (8) cell cycle. Signaling pathway analysis indicated that Wnt1/Ca2+ signaling pathway was activated during head regeneration. Integrating the analyses of proteome expression profiling, functional annotation, and signaling pathway, amputation-induced head reformation requires some mechanisms to promote cell proliferation and differentiation, including differential regulation of proapoptotic and antiapoptotic proteins, and the regulation of proliferation and differentiation-related proteins. Importantly, Wnt1/Ca2+ signaling pathway upregulates Rx expression, finally facilitating the differentiation of neoblasts into various cell types. Taken together, our study demonstrated that proteomic analysis approach used by us is a powerful tool in understanding molecular process related to head regeneration of planarian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adamidi C, Wang Y, Gruen D et al (2011) De novo assembly and validation of planaria transcriptome by massive parallel sequencing and shotgun proteomics. Genome Res 21:1193–1200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Almuedo-Castillo M, Sureda-Gómez M, Adell T (2012) Wnt signaling in planarians: new answers to old questions. Int J Dev Biol 56:53–65

    Article  CAS  PubMed  Google Scholar 

  • Baumeister P, Luo S, Skarnes WC et al (2005) Endoplasmic reticulum stress induction of the Grp78/BiP promoter: activating mechanisms mediated by YY1 and its interactive chromatin modifiers. Mol Cell Biol 25:4529–4540

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Beane WS, Morokuma J, Adams DS, Levin M (2011) A chemical genetics approach reveals H, K-ATPase-mediated membrane voltage is required for planarian head regeneration. Chem Biol 18:77–89

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bocchinfuso DG, Taylor P, Ross E et al (2012) Proteomic profiling of the planarian Schmidtea mediterranea and its mucous reveals similarities with human secretions and those predicted for parasitic flatworms. Mol Cell Proteomics 11:681–691

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Böser A, Drexler HC, Reuter H et al (2013) SILAC proteomics of planarians identifies Ncoa5 as a conserved component of pluripotent stem cells. Cell Rep 5:1142–1155

    Article  PubMed  Google Scholar 

  • Casarosa S, Andreazzoli M, Simeone A, Barsacchi G (1997) Xrx1, a novel Xenopus homeobox gene expressed during eye and pineal gland development. Mech Dev 61:187–198

    Article  CAS  PubMed  Google Scholar 

  • Cebrià F, Newmark PA (2005) Planarian homologs of netrin and netrin receptor are required for proper regeneration of the central nervous system and the maintenance of nervous system architecture. Development 132:3691–3703

    Article  PubMed  Google Scholar 

  • Cebrià F, Newmark PA (2007) Morphogenesis defects are associated with abnormal nervous system regeneration following roboA RNAi in planarians. Development 134:833–837

    Article  PubMed  Google Scholar 

  • Cebria F, Nakazawa M, Mineta K et al (2002) Dissecting planarian central nervous system regeneration by the expression of neural-specific genes. Develop Growth Differ 44:135–146

    Article  CAS  Google Scholar 

  • del Marmol V, Ito S, Bouchard B et al (1996) Cysteine deprivation promotes eumelanogenesis in human melanoma cells. J Investig Dermatol 107:698–702

    Article  PubMed  Google Scholar 

  • Dong ZM (2011) Eye morphogenesis and expression analysis of eye-related genes during planarian head regeneration (D). Henan Normal University, Xinxiang

    Google Scholar 

  • Dosch R, Niehrs C (2000) Requirement for anti-dorsalizing morphogenetic protein in organizer patterning. Mech Dev 90:195–203

    Article  CAS  PubMed  Google Scholar 

  • Euler-Taimor G, Heger J (2006) The complex pattern of SMAD signaling in the cardiovascular system. Cardiovasc Res 69:15–25

    Article  CAS  PubMed  Google Scholar 

  • Fagotti A, Simoncelli F, Di Rosa I, Pascolini R (2006) Cytoskeletal proteins and morphogenesis in planarians. Invert Surviv J 3:117–124

  • Felix DA, Aboobaker AA (2010) The TALE class homeobox gene Smed-prep defines the anterior compartment for head regeneration. PLoS Genet 6:e1000915

    Article  PubMed Central  PubMed  Google Scholar 

  • Fernández-Taboada E, Rodríguez-Esteban G, Saló E, Abril JF (2011) A proteomics approach to decipher the molecular nature of planarian stem cells. BMC Genomics 12:133

    Article  PubMed Central  PubMed  Google Scholar 

  • Ghosh S, Roy S, Seguin C, Bryant SV, Gardiner DM (2008) Analysis of the expression and function of Wnt-5a and Wnt-5b in developing and regenerating axolotl (Ambystoma mexicanum) limbs. Develop Growth Differ 50:289–297

    Article  CAS  Google Scholar 

  • Goodman R, Lin-Ye A, Geddis MS et al (2009) Extremely low frequency electromagnetic fields activate the ERK cascade, increase hsp70 protein levels and promote regeneration in Planaria. Int J Radiat Biol 85:851–859

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gurley KA, Rink JC, Sánchez Alvarado A (2008) Beta-catenin defines head versus tail identity during planarian regeneration and homeostasis. Science 319:323–327

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gurley KA, Elliott SA, Simakov O et al (2010) Expression of secreted Wnt pathway components reveals unexpected complexity of the planarian amputation response. Dev Biol 347:24–39

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hollenbach JP, Resch AM, Palakodeti D, Graveley BR, Heinen CD (2011) Loss of DNA mismatch repair imparts a selective advantage in planarian adult stem cells. PLoS One 6:e21808

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hollis T, Stattel JM, Walther DS, Richardson CC, Ellenberger T (2001) Structure of the gene 2.5 protein, a single-stranded DNA binding protein encoded by bacteriophage T7. Proc Natl Acad Sci U S A 98:9557–9562

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hubert A, Henderson JM, Ross KG et al (2013) Epigenetic regulation of planarian stem cells by the SET1/MLL family of histone methyltransferases. Epigenetics 8:79–91

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Iglesias M, Gomez-Skarmeta JL, Saló E, Adell T (2008) Silencing of Smed-betacatenin1 generates radial-like hypercephalized planarians. Development 135:1215–1221

    Article  CAS  PubMed  Google Scholar 

  • Iglesias M, Almuedo-Castillo M, Aboobaker AA, Saló E (2011) Early planarian brain regeneration is independent of blastema polarity mediated by the Wnt/β-catenin pathway. Dev Biol 358:68–78

    Article  CAS  PubMed  Google Scholar 

  • Inoue T, Kumamoto H, Okamoto K et al (2004) Morphological and functional recovery of the planarian photosensing system during head regeneration. Zool Sci 21:275–283

    Article  CAS  PubMed  Google Scholar 

  • Kao D, Felix D, Aboobaker A (2013) The planarian regeneration transcriptome reveals a shared but temporally shifted regulatory program between opposing head and tail scenarios. BMC Genomics 14:797

    Article  PubMed Central  PubMed  Google Scholar 

  • Kim SH, Cho KW, Choi HS et al (2009) The forkhead transcription factor Foxc2 stimulates osteoblast differentiation. Biochem Biophys Res Commun 386:532–536

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Parrish AB, Kurokawa M et al (2012) Rsk-mediated phosphorylation and 14-3-3ɛ binding of Apaf-1 suppresses cytochrome c-induced apoptosis. EMBO J 31:1279–1292

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leyns L, Bouwmeester T, Kim SH, Piccolo S, De Robertis EM (1997) Frzb-1 is a secreted antagonist of Wnt signaling expressed in the Spemann organizer. Cell 88:747–756

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li ZW, Li ZY (2012) Glucose regulated protein 78: a critical link between tumor microenvironment and cancer hallmarks. Biochim Biophys Acta 1826:13–22

    CAS  PubMed  Google Scholar 

  • Mannini L, Deri P, Picchi J, Batistoni R (2008) Expression of a retinal homeobox (Rx) gene during planarian regeneration. Int J Dev Biol 52:1113–1117

    Article  CAS  PubMed  Google Scholar 

  • Martelly I, Molla A, Thomasset M, Le Moigne A (1983) Planarian regeneration: in vivo and in vitro effects of calcium and calmodulin on DNA synthesis. Cell Differ 13:25–34

    Article  CAS  PubMed  Google Scholar 

  • Martinez-De Luna RI, Kelly LE, El-Hodiri HM (2011) The retinal homeobox (Rx) gene is necessary for retinal regeneration. Dev Biol 353:10–18

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mathers PH, Grinberg A, Mahon KA, Jamrich M (1997) The Rx homeobox gene is essential for vertebrate eye development. Nature 387:603–607

    Article  CAS  PubMed  Google Scholar 

  • Molina MD, Saló E, Cebrià F (2007) The BMP pathway is essential for re-specification and maintenance of the dorsoventral axis in regenerating and intact planarians. Dev Biol 311:79–94

    Article  CAS  PubMed  Google Scholar 

  • Morgan TH (1904) Polarity and axial heteromophosis. Am Nat 38:502–505

    Google Scholar 

  • Naviaux RK, Le TP, Bedelbaeva K et al (2009) Retained features of embryonic metabolism in the adult MRL mouse. Mol Genet Metab 96:133–144

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nogi T, Zhang D, Chan JD, Marchant JS (2009) A novel biological activity of praziquantel requiring voltage-operated Ca2+ channel beta subunits: subversion of flatworm regenerative polarity. PLoS Negl Trop Dis 3:e464

    Article  PubMed Central  PubMed  Google Scholar 

  • Orii H, Watanabe K (2007) Bone morphogenetic protein is required for dorso-ventral patterning in the planarian Dugesia japonica. Develop Growth Differ 49:345–349

    Article  CAS  Google Scholar 

  • Oviedo NJ, Levin M (2007) smedinx-11 is a planarian stem cell gap junction gene required for regeneration and homeostasis. Development 134:3121–3131

    Article  CAS  PubMed  Google Scholar 

  • Patergnani S, Suski JM, Agnoletto C et al (2011) Calcium signaling around mitochondria associated membranes (MAMs). Cell Commun Signal 9:19

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Petersen CP, Reddien PW (2008) Smed-betacatenin-1 is required for anteroposterior blastema polarity in planarian regeneration. Science 319:327–330

    Article  CAS  PubMed  Google Scholar 

  • Pootrakul L, Datar RH, Shi SR et al (2006) Expression of stress response protein Grp78 is associated with the development of castration-resistant prostate cancer. Clin Cancer Res 12:5987–5993

    Article  CAS  PubMed  Google Scholar 

  • Qian D, Jones C, Rzadzinska A et al (2007) Wnt5a functions in planar cell polarity regulation in mice. Dev Biol 306:121–133

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rao N, Jhamb D, Milner DJ et al (2009) Proteomic analysis of blastema formation in regenerating axolotl limbs. BMC Biol 7:83

    Article  PubMed Central  PubMed  Google Scholar 

  • Rink JC (2013) Stem cell systems and regeneration in planaria. Dev Genes Evol 223:67–84

    Article  PubMed Central  PubMed  Google Scholar 

  • Rink JC, Gurley KA, Elliott SA, Sánchez Alvarado A (2009) Planarian Hh signaling regulates regeneration polarity and links Hh pathway evolution to cilia. Science 326:1406–1410

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rink JC, Vu HT, Sánchez Alvarado A (2011) The maintenance and regeneration of the planarian excretory system are regulated by EGFR signaling. Development 138:3769–3780

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Robb SMC, Ross E, Alvarado AS (2008) SmedGD: the Schmidtea mediterranea genome database. Nucleic Acids Res 36:D599–D606

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rossi L, Salvetti A, Marincola FM et al (2007) Deciphering the molecular machinery of stem cells: a look at the neoblast gene expression profile. Genome Biol 8:R62

    Article  PubMed Central  PubMed  Google Scholar 

  • Rouhana L, Vieira AP, Roberts-Galbraith RH, Newmark PA (2012) PRMT5 and the role of symmetrical dimethylarginine in chromatoid bodies of planarian stem cells. Development 139:1083–1094

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sánchez Alvarado A (2003) The freshwater planarian Schmidtea mediterranea: embryogenesis, stem cells and regeneration. Curr Opin Genet Dev 13:438–444

    Article  PubMed  Google Scholar 

  • Sandmann T, Vogg MC, Owlarn S, Boutros M, Bartscherer K (2011) The head-regeneration transcriptome of the planarian Schmidtea mediterranea. Genome Biol 12:R76

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schneider JW, Gao Z, Li S et al (2008) Small-molecule activation of neuronal cell fate. Nat Chem Biol 4:408–410

    Article  CAS  PubMed  Google Scholar 

  • Shibata N, Rouhana L, Agata K (2010) Cellular and molecular dissection of pluripotent adult somatic stem cells in planarians. Develop Growth Differ 52:27–41

    Article  CAS  Google Scholar 

  • Singh S, Misiak M, Beyer C, Arnold S (2010) Brain region specificity of 3-nitropropionic acid-induced vulnerability of neurons involves cytochrome c oxidase. Neurochem Int 57:297–305

    Article  CAS  PubMed  Google Scholar 

  • Solana J, Kao D, Mihaylova Y et al (2012) Defining the molecular profile of planarian pluripotent stem cells using a combinatorial RNAseq, RNA interference and irradiation approach. Genome Biol 13:R19

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Veeman MT, Axelrod JD, Moon RT (2003) A second canon: functions and mechanisms of β-catenin-independent Wnt signaling. Dev Cell 5:367–377

    Article  CAS  PubMed  Google Scholar 

  • Wallingford JB, Habas R (2005) The developmental biology of Dishevelled: an enigmatic protein governing cell fate and cell polarity. Development 132:4421–4436

    Article  CAS  PubMed  Google Scholar 

  • Wenemoser D, Reddien PW (2010) Planarian regeneration involves distinct stem cell responses to wounds and tissue absence. Dev Biol 344:979–991

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wenemoser D, Lapan SW, Wilkinson AW, Bell GW, Reddien PW (2012) A molecular wound response program associated with regeneration initiation in planarians. Genes Dev 26:988–1002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yuan ZQ, Zhao BS, Zhang JY (2012) Expression patterns of the STAG gene in intact and regenerating planarians (Dugesia japonica). Genet Mol Res 10:410–418

    Article  Google Scholar 

  • Zhang LH, Kamanna VS, Zhang MC, Kashyap ML (2008) Niacin inhibits surface expression of ATP synthase beta chain in HepG2 cells: implications for raising HDL. J Lipid Res 49:1195–1201

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Chan JD, Nogi T, Marchant JS (2011) Opposing roles of voltage-gated Ca2+ channels in neuronal control of regenerative patterning. J Neurosci 31:15983–15995

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou L, Wu S, Liu D et al (2012) Characterization and expression analysis of a trypsin-like serine protease from planarian Dugesia japonica. Mol Biol Rep 39:7041–7047

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 31401209) and National Basic Research 973 Pre-research Program of China (No. 2010CB534905).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cunshuan Xu.

Additional information

Communicated by David A. Weisblat

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

The numbers of upregulated, downregulated and up/downregulated proteins involved in different functional categories. Note: “—” indicates the absence of up/downregulated proteins (DOC 90 kb)

Supplementary Table 2

Highly regulated proteins that are identified by this study in each functional categories. Note: “NC” represents that the expression abundance of protein is not detected. Negative value presents the expression abundance lower than the control. The asterisk represents that the expression change of protein is more than 4-fold when compared to the control. (DOC 119 kb)

Supplementary Table 3

Head regeneration-involved proteins that have been identified by other studies. (DOC 45 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Xu, C. Protein expression profiling in head fragments during planarian regeneration after amputation. Dev Genes Evol 225, 79–93 (2015). https://doi.org/10.1007/s00427-015-0494-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-015-0494-3

Keywords

Navigation