Skip to main content
Log in

Inhibition of the binding of MSG-intermolt-specific complex, MIC, to the sericin-1 gene promoter and sericin-1 gene expression by POU-M1/SGF-3

Development Genes and Evolution Aims and scope Submit manuscript

Abstract

The sericin-1 gene encoding a glue protein is expressed in the middle silk gland (MSG) of the silkworm, Bombyx mori. A member of the class III POU domain transcription factors, POU-M1, was cloned as the factor bound to the SC site of the sericin-1 promoter and has been proposed to be a positive transcription factor. In this study, we analyzed the expression pattern of the POU-M1 gene in fourth and fifth instars in comparison with the pattern of the sericin-1 gene. The POU-M1 gene was expressed strongly in the region anterior to the sericin-1-expressing portion of the silk gland at both feeding stages. As the sericin-1-expressing region expands from the posterior to middle portions of the MSG in the fifth instar, the POU-M1-expressing region retreated from the middle to anterior portion. Introduction of the expression vector of POU-M1 into the silk glands by gene gun technology repressed promoter activity of the sericin-1 gene, suggesting that POU-M1 regulates the sericin-1 gene negatively. An in vitro binding assay showed that POU-M1 bound not only to the SC site but also to other promoter elements newly detected in vivo. Another spatiotemporal specific factor MIC binds to these elements, and POU-M1 competed with MIC to bind at the −70 site essential for promoter activity. These results suggest that POU-M1 is involved in restricting the anterior boundary of the sericin-1-expressing region in the silk gland by inhibiting the binding of the transcriptional activator to the promoter elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson MG, Certel SJ, Certel K, Lee T, Montell DJ, Johnson WA (1996) Function of the Drosophila POU domain transcription factor drifter as an upstream regulator of breathless receptor tyrosine kinase expression in developing trachea. Development 122:4169–4178

    CAS  PubMed  Google Scholar 

  • Certel K, Hudson A, Carroll SB, Johnson WA (2000) Restricted patterning of vestigial expression in Drosophila wing imaginal discs requires synergistic activation by both Mad and the drifter POU domain transcription factor. Development 127:3173–3183

    CAS  PubMed  Google Scholar 

  • Couble P, Moine A, Garel A, Prudhomme J-C (1983) Developmental variations of a nonfibroin mRNA of Bombyx mori silkgland, encoding for a low-molecular-weight silk protein. Dev Biol 97:398–407

    Article  CAS  PubMed  Google Scholar 

  • Couble P, Michaille J-J, Garel A, Couble M-L, Prudhomme J-C (1987) Developmental switches of sericin mRNA splicing in individual cells of Bombyx mori silkgland. Dev Biol 124:431–440

    Article  CAS  PubMed  Google Scholar 

  • Fukuta M, Matsuno K, Hui CC, Nagata T, Takiya S, Xu PX, Ueno K, Suzuki Y (1993) Molecular cloning of a POU domain-containing factor involved in the regulation of the Bombyx sericin-1 gene. J Biol Chem 268:19471–19475

    CAS  PubMed  Google Scholar 

  • Herr W, Cleary MA (1995) The POU domain: versatility in transcriptional regulation by a flexible two-in-one DNA-binding domain. Genes Dev 9:1679–1693

    Article  CAS  PubMed  Google Scholar 

  • Hui C-C, Matsuno K, Suzuki Y (1990) Fibroin gene promoter contains a cluster of homeodomain binding sites that interact with three silk gland factors. J Mol Biol 213:651–670

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa E, Suzuki Y (1985) Tissue- and stage-specific expression of sericin genes in the middle silk gland of Bombyx mori. Develop Growth Differ 27:73–82

    Article  CAS  Google Scholar 

  • Johnson WA, Hirsh J (1990) Binding of a Drosophila POU-domain protein to a sequence element regulating gene expression in specific dopaminergic neurons. Nature 343:467–470

    Article  CAS  PubMed  Google Scholar 

  • Julien E, Bordeaux M-C, Garel A, Couble P (2002) Fork head alternative binding drives stage-specific gene expression in the silk gland of Bombyx mori. Insect Biochem Mol Biol 32:377–387

    Article  CAS  PubMed  Google Scholar 

  • Junell A, Uvell H, Davis MM, Edlundh-Rose E, Anttonsson A, Pick L, Engstrom Y (2010) The POU transcription factor Drifter/Ventral veinless regulates expression of Drosophila immune defence genes. Mol Cell Biol 30:3672–3684

    Article  CAS  PubMed  Google Scholar 

  • Kiguchi K, Agui N (1981) Ecdysteroid levels and developmental events during larval moulting in the silkworm, Bombyx mori. J Insect Physiol 27:805–812

    Article  CAS  Google Scholar 

  • Kimoto M, Yamaguchi M, Fujimoto Y, Takiya S (2010) Expression profiles of the genes for nine transcription factors and their isoforms in the posterior silk gland of the silkworm Bombyx mori during the last and penultimate instars. J Insect Biotech Sericol 79:31–43

    CAS  Google Scholar 

  • Kobayashi I, Kojima K, Uchino K, Sezutsu H, Iizuka T, Tatematsu K, Yonemura N, Tanaka H, Yamakawa M, Ogura E, Kamachi Y, Tamura T (2011) An efficient binary system for gene expression in the silkworm, Bombyx mori, using GAL4 variants. Arch Insect Biochem Physiol 76:195e210

    Article  Google Scholar 

  • Kokubo H, Takiya S, Mach V, Suzuki Y (1996) Spatial and temporal expression pattern of Bombyx fork head/SGF-1 gene in embryogenesis. Dev Genes Evol 206:80–85

    Article  CAS  Google Scholar 

  • Kokubo H, Xu P-X, Xu X, Matsunami K, Suzuki Y (1997) Spatial and temporal expression pattern of POU-M1/SGF-3 in Bombyx mori embryogenesis. Dev Genes Evol 206:494–502

    Article  CAS  Google Scholar 

  • Li J-Y, Yang H-J, Lan T-Y, Wei H, Zhang H-R, Chen M, Fan W, Ma Y-Y, Zhong B-X (2011) Expression profiling and regulation of genes related to silkworm posterior silk gland development and fibroin synthesis. J Proteome Res 10:3551–3564

    Article  CAS  PubMed  Google Scholar 

  • Mach V, Takiya S, Ohno K, Handa H, Imai T, Suzuki Y (1995) Silk gland factor-1 involved in the regulation of Bombyx sericin-1 gene contains fork head motif. J Biol Chem 270:9340–9346

    Article  CAS  PubMed  Google Scholar 

  • Maekawa H, Suzuki Y (1980) Repeated turn-off and turn-on of fibroin gene transcription during silk gland development of Bombyx mori. Dev Biol 78:394–406

    Article  CAS  PubMed  Google Scholar 

  • Mange A, Julien E, Prudhomme J-C, Couble P (1997) A strong inhibitory element down-regulates SRE-stimulated transcription of the A3 cytoplasmic actingene of Bombyx mori. J Mol Biol 265:266–274

    Google Scholar 

  • Matsunami K, Kokubo H, Ohno K, Suzuki Y (1998) Expression pattern analysis of SGF-3/POU-M1 in relation to sericin-1 gene expression in the silk gland. Develop Growth Differ 40:591–597

    Article  CAS  Google Scholar 

  • Matsuno K, Hui CC, Takiya S, Suzuki T, Ueno K, Suzuki Y (1989) Transcription signals and protein binding sites for sericin gene transcription in vitro. J Biol Chem 264:18707–18713

    CAS  PubMed  Google Scholar 

  • Matsuno K, Takiya S, Hui C-C, Suzuki T, Fukuta T, Ueno K, Suzuki Y (1990) Transcriptional stimulation via SC site of Bombyx sericin-1 gene through an interaction with a DNA binding protein SGF-3. Nucleic Acids Res 18:1853–1858

    Article  CAS  PubMed  Google Scholar 

  • Nishita Y, Takiya S (2009) Differential responsiveness of BmBR-C promoters to ecdysone signals. J Insect Biotech Sericol 78:127–138

    Google Scholar 

  • Okamoto H, Ishikawa E, Suzuki Y (1982) Structural analysis of sericin genes. Homologies with fibroin gene in the 5′ flanking nucleotide sequences. J Biol Chem 257:15192–15199

    CAS  PubMed  Google Scholar 

  • Parker DS, White MA, Ramos AI, Cohen BA, Barolo S (2011) The cis-regulatory logic of hedgehog gradient responses: key roles for Gli binding affinity, competition, and cooperativity. Sci Signal 4:ra38

    Article  PubMed  Google Scholar 

  • Rowan S, Siggers T, Lachke SA, Yue Y, Bulyk ML, Maas RL (2010) Precise temporal control of the eye regulatory gene Pax6 via enhancer-binding site affinity. Genes Dev 24:980–985

    Article  CAS  PubMed  Google Scholar 

  • Ryan AK, Rosenfeld MG (1997) POU domain family values: flexibility, partnerships, and developmental codes. Genes Dev 11:1207–1225

    Article  CAS  PubMed  Google Scholar 

  • Sakudoh T, Sezutsu H, Nakashima T, Kobayashi I, Fujimoto H, Uchino K, Banno Y, Iwano H, Maekawa H, Tamura T, Kataoka H, Tsuchida K (2007) Carotenoid silk coloration is controlled by a carotenoid-binding protein, a product of the Yellow blood gene. Proc Natl Acad Sci U S A 21:8941–8946

    Article  Google Scholar 

  • Stepchenko AG, Luchina NN, Pankratova EV (1997) Cysteine 50 of the POUH domain determines the range of targets recognized by POU proteins. Nucleic Acids Res 25:2847–2853

    Article  CAS  PubMed  Google Scholar 

  • Suzuki Y, Obara T, Takiya S, Hui C-C, Matsuno K, Suzuki T, Suzuki E, Ohkubo M, Tamura T (1990) Differential transcription of the fibroin and sericin-1 genes in cell-free extracts. Develop Growth Differ 32:179–187

    Article  CAS  Google Scholar 

  • Takasu Y, Hata T, Uchino K, Zhang Q (2010) Identification of Ser2 proteins as major sericin components in the non-cocoon silk of Bombyx mori. Insect Biochem Mol Biol 40:339–344

    Article  CAS  PubMed  Google Scholar 

  • Takiya S, Hui C-C, Suzuki Y (1990) A contribution of the core-promoter and its surrounding regions to the preferential transcription of the fibroin gene in posterior silk gland extracts. EMBO J 9:489–496

    CAS  PubMed  Google Scholar 

  • Takiya S, Kokubo H, Suzuki Y (1997) Transcriptional regulatory elements in the upstream and intron of the fibroin gene bind three specific factors POU-M1, Bm Fkh and FMBP-1. Biochem J 321:645–653

    CAS  PubMed  Google Scholar 

  • Takiya S, Ishikawa T, Ohtsuka K, Nishita Y, Suzuki Y (2005) Fibroin-modulator-binding protein-1 (FMBP-1) contains a novel DNA-binding domain, repeats of the score and three amino acid peptide (STP), conserved from Caenorhabditis elegans to humans. Nucleic Acids Res 33:786–795

    Article  CAS  PubMed  Google Scholar 

  • Takiya S, Inoue H, Kimoto M (2011) Novel enhancer and promoter elements indispensable for the tissue-specific expression of the sericin-1 gene of the silkworm Bombyx mori. Insect Biochem Mol Biol 41:592–601

    Article  CAS  PubMed  Google Scholar 

  • Tsuda M, Suzuki Y (1981) Faithful transcription initiation of fibroin gene in a homologous cell-free system reveals an enhancing effect of 5′ flanking sequence far upstream. Cell 27:175–182

    Article  CAS  PubMed  Google Scholar 

  • Uchino K, Imamura M, Sezutsu H, Kobayashi I, Kojima K, Kanda T, Tamura T (2006) Evaluating promoter sequences for trapping an enhancer activity in the silkworm Bombyx mori. J Insect Biotech Sericol 75:89–97

    CAS  Google Scholar 

  • Xu PX, Fukuta M, Takiya S, Matsuno K, Xu X, Suzuki Y (1994) Promoter of the POU-M1/SGF-3 gene involved in the expression of Bombyx silk genes. J Biol Chem 269:2733–2742

    CAS  PubMed  Google Scholar 

  • Zhang T-Y, Kang L, Zhang Z-F, Xu W-H (2004) Identification of a POU factor involved in regulating the neuron-specific expression of the gene encoding diapause hormone and pheromone biosynthesis-activating neuropeptide in Bombyx mori. Biochem J 380:255–263

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Nishita and Ms. Kosaka for helpful discussions and technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeharu Takiya.

Additional information

Communicated by S. Roth

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kimoto, M., Kitagawa, T., Kobayashi, I. et al. Inhibition of the binding of MSG-intermolt-specific complex, MIC, to the sericin-1 gene promoter and sericin-1 gene expression by POU-M1/SGF-3. Dev Genes Evol 222, 351–359 (2012). https://doi.org/10.1007/s00427-012-0418-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-012-0418-4

Keywords

Navigation