Skip to main content

Advertisement

Log in

Early development of coelomic structures in an echinoderm larva and a similarity with coelomic structures in a chordate embryo

Development Genes and Evolution Aims and scope Submit manuscript

Abstract

Early coelomic development in the abbreviated development of the sea urchin Holopneustes purpurescens is described and then used in a comparison with coelomic development in chordate embryos to support homology between a single arm of the five-armed radial body plan of an echinoderm and the single bilateral axis of a chordate. The homology depends on a positional similarity between the origin of the hydrocoele in echinoderm development and the origin of the notochord in chordate development, and a positional similarity between the respective origins of the coelomic mesoderm and chordate mesoderm in echinoderm and chordate development. The hydrocoele is homologous with the notochord and the secondary podia are homologous with the somites. The homology between a single echinoderm arm and the chordate axis becomes clear when the aboral to oral growth from the archenteron in the echinoderm larva is turned anteriorly, more in line with the anterior–posterior axis of the early zygote. A dorsoventral axis inversion in chordates is not required in the proposed homology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arenas-Mena C, Martinez P, Cameron RA, Davidson EH (1998) Expression of the Hox gene complex in the indirect development of a sea urchin. Proc Natl Acad Sci USA 95:13062–13067

    Article  PubMed  CAS  Google Scholar 

  • Arenas-Mena C, Cameron AR, Davidson EH (2000) Spatial expression of Hox cluster genes in the ontogeny of a sea urchin. Development 127:4631–4643

    PubMed  CAS  Google Scholar 

  • Aulehla A, Pourquié O (2010) Signaling gradients during paraxial mesoderm development. Cold Spring Harb Perspect Biol 2:a000869

    Article  PubMed  Google Scholar 

  • Bellairs R, Osmond M (2005) The atlas of chick development, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Cameron CB, Garey JR, Swalla BJ (2000) Evolution of the chordate body plan: new insights from phylogenetic analyses of deuterostome phyla. Proc Natl Acad Sci USA 97:4469–4474

    Article  PubMed  CAS  Google Scholar 

  • Cisternas P, Byrne M (2009) Expression of Hox4 during development of the pentamerous juvenile sea star, Parvulastra exigua. Dev Genes Evol 219:613–618

    Article  PubMed  CAS  Google Scholar 

  • Cox G (2007) Optical imaging techniques in cell biology. CRC, Boca Raton

    Google Scholar 

  • David B, Mooi R (1996) Embryology supports a new theory of skeletal homologies for the phylum Echinodermata. C R Acad Sci Paris 319:577–584

    Google Scholar 

  • De Robertis EM, Sasai Y (1996) A common plan for dorsoventral patterning in Bilateria. Nature 380:37–40

    Article  PubMed  Google Scholar 

  • Ferkowicz MJ, Raff RA (2001) Wnt gene expression in sea urchin development: heterochronies associated with the evolution of developmental mode. Evol Dev 3:24–33

    Article  PubMed  CAS  Google Scholar 

  • Gilbert SF (2010) Developmental biology, 9th edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Hara Y, Yamaguchi M, Akasaka K, Nakano H, Nonaka M, Amemiya S (2006) Expression patterns of Hox genes in larvae of the sea lily Metacrinus rotundus. Dev Genes Evol 216:797–809

    Article  PubMed  CAS  Google Scholar 

  • Heinzeller Th, Welsch U (1999) The complex of notochord/neural plate in chordates and the complex of hydrocoel/ectoneural cord in echinoderms—analogous or homologous? In: Candia Carnevali MD, Bonasoro F (eds) Echinoderm research 1998. Balkema, Rotterdam, pp 285–290

    Google Scholar 

  • Hibino T, Harada Y, Minokawa T, Nonaka M, Amemiya S (2004) Molecular heterotopy in the expression of Brachyury orthologs in order Clypeasteroida (irregular sea urchins) and order Echinoida (regular sea urchins). Dev Genes Evol 214:546–558

    Article  PubMed  CAS  Google Scholar 

  • Holland LZ, Kene M, Williams NA, Holland ND (1997) Sequence and embryonic expression of the amphioxus engrailed gene (AmphiEn): the metameric pattern of transcription resembles that of its segment-polarity homolog in Drosophila. Development 124:1723–1732

    PubMed  CAS  Google Scholar 

  • Hotchkiss FHC (1998) A “rays-as-appendages” model for the origin of pentamerism in echinoderms. Paleobiology 24:200–214

    Google Scholar 

  • Hyman LH (1955) The invertebrates: Echinodermata IV. McGraw-Hill, New York

    Google Scholar 

  • Jefferies RPS (1990) The solute Dendrocystoides scoticus from the Upper Ordovician of Scotland and the ancestry of chordates and echinoderms. Palaeontology 33:631–679

    Google Scholar 

  • Lacalli TC (2005) Protochordate body plan and the evolutionary role of larvae: old controversies resolved? Can J. Zool 83:216–224

    Google Scholar 

  • Lawson KA, Meneses JJ, Pedersen RA (1991) Clonal analysis of epiblast fate during germ layer formation in the mouse embryo. Development 113:891–911

    PubMed  CAS  Google Scholar 

  • Lowe CJ, Wray GA (1997) Radical alterations in the roles of homeobox genes during echinoderm evolution. Nature 389:718–721

    Article  PubMed  CAS  Google Scholar 

  • Mooi R, David B, Marchand D (1994) Echinoderm skeletal homologies: classical morphology meets modern phylogenetics. In: David B, Guille A, Féral JP, Roux M (eds) Echinoderms through time. Balkema, Rotterdam, pp 87–95

    Google Scholar 

  • Mooi R, David B, Wray GA (2005) Arrays in rays: terminal addition in echinoderms and its correlation with gene expression. Evol Dev 7:542–555

    Article  PubMed  Google Scholar 

  • Morris VB (1995) Apluteal development of the sea urchin Holopneustes purpurescens Agassiz (Echinodermata: Echinoidea: Euechinoidea). Zool J Linnean Soc Lond 114:349–364

    Article  Google Scholar 

  • Morris VB (2007) Origins of radial symmetry identified in an echinoderm during adult development and the inferred axes of ancestral bilateral symmetry. Proc R Soc B 274:1511–1516

    Article  PubMed  Google Scholar 

  • Morris VB (2009) On the sites of secondary podia formation in a juvenile echinoid: growth of the body types in echinoderms. Dev Genes Evol 219:597–608

    Article  PubMed  Google Scholar 

  • Morris VB (2011) Coelomogenesis during the abbreviated development of the echinoid Heliocidaris erythrogramma and the developmental origin of the echinoderm pentameral body plan. Evol Dev 13:370–381

    Article  PubMed  Google Scholar 

  • Morris VB, Byrne M (2005) Involvement of two Hox genes and Otx in echinoderm body-plan morphogenesis in the sea urchin Holopneustes purpurescens. J Exp Zool (Mol Dev Evol) 304B:456–467

    Article  CAS  Google Scholar 

  • Nishida H (1987) Cell lineage analysis in ascidian embryos by intracellular injection of a tracer enzyme. III. Up to the tissue restricted stage. Dev Biol 121:526–541

    Article  PubMed  CAS  Google Scholar 

  • Peterson KJ, Harada Y, Cameron RA, Davidson EH (1999a) Expression pattern of Brachyury and Not in the sea urchin: comparative implications for the origins of mesoderm in the basal deuterostomes. Dev Biol 207:419–431

    Article  PubMed  CAS  Google Scholar 

  • Peterson KJ, Cameron RA, Tagawa K, Satoh N, Davidson EH (1999b) A comparative molecular approach to mesodermal patterning in basal deuterostomes: the expression pattern of Brachyury in the enteropneust hemichordate Ptychodera flava. Development 126:85–95

    PubMed  CAS  Google Scholar 

  • Poustka AJ, Kühn A, Groth D, Weise V, Yaguchi S, Burke RD, Herwig R, Lehrach H, Panopoulou G (2007) A global view of gene expression in lithium and zinc treated sea urchin embryos: new components of gene regulatory networks. Genome Biol 8:R85

    Article  PubMed  Google Scholar 

  • Putnam NH, Butts T, Ferrier DEK, Furlong RF, Hellsten U et al (2008) The amphioxus genome and the evolution of the chordate karyotype. Nature 453:1064–1071

    Article  PubMed  CAS  Google Scholar 

  • Raff RA, Popodi EM (1996) Evolutionary approaches to analyzing development. In: Ferraris JD, Palumbi SR (eds) Molecular zoology: advances, strategies, and protocols. Wiley, New York, pp 245–265

    Google Scholar 

  • Ruppert EE (2005) Key characters uniting hemichordates and chordates: homologies or homoplasies? Can J Zool 83:8–23

    Article  Google Scholar 

  • Selleck MAJ, Stern CD (1991) Fate mapping and cell lineage analysis of Hensen's node in the chick embryo. Development 112:615–626

    PubMed  CAS  Google Scholar 

  • Smith AB (2005) The pre-radial history of echinoderms. Geol J 40:255–280

    Article  Google Scholar 

  • Swalla BJ, Smith AB (2008) Deciphering deuterostome phylogeny: molecular, morphological and palaeontological perspectives. Phil Trans R Soc B 363:1557–1568

    Article  PubMed  Google Scholar 

  • Turner RL (1998) The metameric echinoderm. In: Mooi R, Telford M (eds) Echinoderms: San Francisco. Balkema, Rotterdam, p 89

  • Ubaghs G (1967) General characters of Echinodermata. In: Moore RC (ed) Treatise on invertebrate paleontology, part S, Echinodermata 1. The University of Kansas and the Geological Society of America, Inc, Lawrence, pp S3–S60

    Google Scholar 

  • von Ubisch L (1913) Die Entwicklung von Strongylocentrotus lividus. (Echinus microtuberculatus, Arbacia pustulosa.). Zeit f wiss Zool 106:409–448

    Google Scholar 

  • Zamora S, Rahman IA, Smith AB (2012) Plated Cambrian bilaterians reveal the earliest stages of echinoderm evolution. PLoS ONE 7(6):e38296

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I thank Eleanor Kable and acknowledge the facilities and the scientific and technical assistance of staff of the Australian Microscopy and Microanalysis Facility at the Electron Microscope Unit, The University of Sydney.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerie B. Morris.

Additional information

Communicated by Hiroki Nishida

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morris, V.B. Early development of coelomic structures in an echinoderm larva and a similarity with coelomic structures in a chordate embryo. Dev Genes Evol 222, 313–323 (2012). https://doi.org/10.1007/s00427-012-0415-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-012-0415-7

Keywords

Navigation