Skip to main content

Advertisement

Log in

Characterization of Cer-1 cis-regulatory region during early Xenopus development

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

Cerberus-related molecules are well-known Wnt, Nodal, and BMP inhibitors that have been implicated in different processes including anterior–posterior patterning and left–right asymmetry. In both mouse and frog, two Cerberus-related genes have been isolated, mCer-1 and mCer-2, and Xcer and Xcoco, respectively. Until now, little is known about the mechanisms involved in their transcriptional regulation. Here, we report a heterologous analysis of the mouse Cerberus-1 gene upstream regulatory regions, responsible for its expression in the visceral endodermal cells. Our analysis showed that the consensus sequences for a TATA, CAAT, or GC boxes were absent but a TGTGG sequence was present at position −172 to −168 bp, relative to the ATG. Using a series of deletion constructs and transient expression in Xenopus embryos, we found that a fragment of 1.4 kb of Cer-1 promoter sequence could reproduce the endogenous expression pattern of Xenopus cerberus. A 0.7-kb mcer-1 upstream region was able to drive reporter expression to the involuting mesendodermal cells, while further deletions abolished reporter gene expression. Our results suggest that although no sequence similarity was found between mouse and Xenopus cerberus cis-regulatory regions, the signaling cascades regulating cerberus expression, during gastrulation, is conserved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AVE:

Anterior visceral endoderm

ADME:

Anterior dorsal mesendoderm

dkk-1:

dickkopf-1

Xcer :

Xenopus Cerberus

mcer-1:

Mouse cerberus-like

IDME:

Involuting mesendoderm

ECR:

Evolutionary conserved sequence

References

  • Agius E, Oelgeschlager M, Wessely O, Kemp C, De Robertis EM (2000) Endodermal Nodal-related signals and mesoderm induction in Xenopus. Development 127:1173–1183

    PubMed  CAS  Google Scholar 

  • Ahmed N, Howard L, Woodland HR (2004) Early endodermal expression of the Xenopus endodermin gene is driven by regulatory sequences containing essential Sox protein-binding elements. Differentiation 72:171–184

    Article  PubMed  CAS  Google Scholar 

  • Barnes JD, Crosby JL, Jones CM, Wright CV, Hogan BL (1994) Embryonic expression of Lim-1, the mouse homolog of Xenopus Xlim-1, suggests a role in lateral mesoderm differentiation and neurogenesis. Dev Biol 161:168–178

    Article  PubMed  Google Scholar 

  • Bauer DV, Huang S, Moody SA (1994) The cleavage stage origin of Spemann’s organizer: analysis of the movements of blastomere clones before and during gastrulation in Xenopus. Development 120:1179–1189

    PubMed  CAS  Google Scholar 

  • Bell E, Munoz-Sanjuan I, Altmann CR, Vonica A, Brivanlou AH (2003) Cell fate specification and competence by Coco, a maternal BMP, TGFbeta and Wnt inhibitor. Development 130:1381–1389

    Article  PubMed  CAS  Google Scholar 

  • Belo JA, Bouwmeester T, Leyns L, Kertesz N, Gallo M, Follettie M, De Robertis EM (1997) Cerberus-like is a secreted factor with neutralizing activity expressed in the anterior primitive endoderm of the mouse gastrula. Mech Dev 68:45–57

    Article  PubMed  CAS  Google Scholar 

  • Belo JA, Leyns L, Yamada G, De Robertis EM (1998) The prechordal midline of the chondrocranium is defective in Goosecoid-1 mouse mutants. Mech Dev 72:15–25

    Article  PubMed  CAS  Google Scholar 

  • Belo JA, Bachiller D, Agius E, Kemp C, Borges AC, Marques S, Piccolo S, De Robertis EM (2000) Cerberus-like is a secreted BMP and nodal antagonist not essential for mouse development. Genesis 26:265–270

    Article  PubMed  CAS  Google Scholar 

  • Belo JA, Silva AC, Borges AC, Filipe M, Bento M, Gonçalves L, Vitorino M, Salgueiro AM, Teixeira V, Tavares AT, Marques S (2009) Generating asymmetries in the early vertebrate embryo: the role of the Cerberus-like family. Int J Dev Biol 53:1399–1407

    Article  PubMed  Google Scholar 

  • Biben C, Stanley E, Fabri L, Kotecha S, Rhinn M, Drinkwater C, Lah M, Wang CC, Nash A, Hilton D et al (1998) Murine cerberus homologue mCer-1: a candidate anterior patterning molecule. Dev Biol 194:135–151

    Article  PubMed  CAS  Google Scholar 

  • Blum M, Gaunt SJ, Cho KW, Steinbeisser H, Blumberg B, Bittner D, De Robertis EM (1992) Gastrulation in the mouse: the role of the homeobox gene goosecoid. Cell 69:1097–1106

    Article  PubMed  CAS  Google Scholar 

  • Borges AC, Marques S, Belo JA (2002) Goosecoid and cerberus-like do not interact during mouse embryogenesis. Int J Dev Biol 46:259–262

    PubMed  CAS  Google Scholar 

  • Bouwmeester T, Kim S, Sasai Y, Lu B, De Robertis EM (1996) Cerberus is a head-inducing secreted factor expressed in the anterior endoderm of Spemann’s organizer. Nature 382:595–601

    Article  PubMed  CAS  Google Scholar 

  • Brannon M, Gomperts M, Sumoy L, Moon RT, Kimelman D (1997) A beta-catenin/XTcf-3 complex binds to the siamois promoter to regulate dorsal axis specification in Xenopus. Genes Dev 11:2359–2370

    Article  PubMed  CAS  Google Scholar 

  • Brennan J, Lu CC, Norris DP, Rodriguez TA, Beddington RS, Robertson EJ (2001) Nodal signalling in the epiblast patterns the early mouse embryo. Nature 411:965–969

    Article  PubMed  CAS  Google Scholar 

  • Brickman JM, Jones CM, Clements M, Smith JC, Beddington RS (2000) Hex is a transcriptional repressor that contributes to anterior identity and suppresses Spemann organiser function. Development 127:2303–2315

    PubMed  CAS  Google Scholar 

  • Chen X, Weisberg E, Fridmacher V, Watanabe M, Naco G, Whitman M (1997) Smad4 and FAST-1 in the assembly of activin-responsive factor. Nature 389:85–89

    Article  PubMed  CAS  Google Scholar 

  • Cho KW, Blumberg B, Steinbeisser H, De Robertis EM (1991) Molecular nature of Spemann’s organizer: the role of the Xenopus homeobox gene goosecoid. Cell 67:1111–1120

    Article  PubMed  CAS  Google Scholar 

  • Clements D, Cameleyre I, Woodland HR (2003) Redundant early and overlapping larval roles of Xsox17 subgroup genes in Xenopus endoderm development. Mech Dev 120:337–348

    Article  PubMed  CAS  Google Scholar 

  • De Robertis EM, Blum M, Niehrs C, Steinbeisser H (1992) Goosecoid and the organizer. Dev Suppl 116:167–171

    Google Scholar 

  • Dufort D, Schwartz L, Harpal K, Rossant J (1998) The transcription factor HNF3beta is required in visceral endoderm for normal primitive streak morphogenesis. Development 125:3015–3025

    PubMed  CAS  Google Scholar 

  • Glinka A, Wu W, Delius H, Monaghan AP, Blumenstock C, Niehrs C (1998) Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391:357–362

    Article  PubMed  CAS  Google Scholar 

  • Hanes SD, Brent R (1989) DNA specificity of the bicoid activator protein is determined by homeodomain recognition helix residue 9. Cell 57:1275–1283

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto H, Rebagliati M, Ahmad N, Muraoka O, Kurokawa T, Hibi M, Suzuki T (2004) The Cerberus/Dan-family protein Charon is a negative regulator of Nodal signaling during left–right patterning in zebrafish. Development 131:1741–1753

    Article  PubMed  CAS  Google Scholar 

  • Hen R, Borrelli E, Sassone-Corsi P, Chambon P (1983) An enhancer element is located 340 base pairs upstream from the adenovirus-2 E1A capsite. Nucleic Acids Res 11:8747–8760

    Google Scholar 

  • Hudson C, Clements D, Friday RV, Stott D, Woodland HR (1997) Xsox17alpha and -beta mediate endoderm formation in Xenopus. Cell 91:397–4051

    Article  PubMed  CAS  Google Scholar 

  • Ishimura A, Maeda R, Takeda M, Kikkawa M, Daar IO, Maeno M (2000) Involvement of BMP-4/msx-1 and FGF pathways in neural induction in the Xenopus embryo. Dev Growth Differ 42:307–316

    Article  PubMed  CAS  Google Scholar 

  • Jones CM, Broadbent J, Thomas PQ, Smith JC, Beddington RS (1999) An anterior signalling centre in Xenopus revealed by the homeobox gene XHex. Curr Biol 9:946–954

    Article  PubMed  CAS  Google Scholar 

  • Katoh M, Katoh M (2006) CER-1 is a common target of WNT and NODAL signaling pathways in human embryonic stem cells. Int J Mol Med 17:795–799

    PubMed  CAS  Google Scholar 

  • Kimura C, Shen MM, Takeda N, Aizawa S, Matsuo I (2001) Complementary functions of Otx2 and Cripto in initial patterning of mouse epiblast. Dev Biol 235:12–32

    Article  PubMed  CAS  Google Scholar 

  • Laurent MN, Blitz IL, Hashimoto C, Rothbacher U, Cho KW (1997) The Xenopus homeobox gene twin mediates Wnt induction of goosecoid in establishment of Spemann’s organizer. Development 124:4905–4916

    PubMed  CAS  Google Scholar 

  • Lerchner W, Latinkic BV, Remacle JE, Huylebroeck D, Smith JC (2000) Region-specific activation of the Xenopus brachyury promoter involves active repression in ectoderm and endoderm: a study using transgenic frog embryos. Development 127:2729–2739

    PubMed  CAS  Google Scholar 

  • Liguori GL, Borges AC, D’Andrea D, Liguoro A, Gonçalves L, Salgueiro AM, Pérsico MG, Belo JA (2008) Cripto independent nodal signalling promotes positioning of the A–P axis in the early mouse embryo. Dev Biol 315:280–289

    Article  PubMed  CAS  Google Scholar 

  • Maeda R, Kobayashi A, Sekine R, Lin JJ, Kung H, Maeno M (1997) Xmsx-1 modifies mesodermal tissue pattern along dorsoventral axis in Xenopus laevis embryo. Development 124:2553–2560

    PubMed  CAS  Google Scholar 

  • Marques S, Borges AC, Silva AC, Freitas S, Cordenonsi M, Belo JA (2004) The activity of the Nodal antagonist Cerl-2 in the mouse node is required for correct L/R body axis. Genes Dev 18:2342–2347

    Article  PubMed  CAS  Google Scholar 

  • McKendry R, Hsu SC, Harland RM, Grosschedl R (1997) LEF-1/TCF proteins mediate wnt-inducible transcription from the Xenopus nodal-related 3 promoter. Dev Biol 192:420–431

    Article  PubMed  CAS  Google Scholar 

  • Mesnard D, Filipe M, Belo JA, Zernicka-Goetz M (2004) The anterior–posterior axis emerges respecting the morphology of the mouse embryo that changes and aligns with the uterus before gastrulation. Curr Biol 14:184–196

    PubMed  CAS  Google Scholar 

  • Mizuseki K, Kishi M, Matsui M, Nakanishi S, Sasai Y (1998) Xenopus Zic-related-1 and Sox-2, two factors induced by chordin, have distinct activities in the initiation of neural induction. Development 125:579–587

    PubMed  CAS  Google Scholar 

  • Mochizuki T, Karavanov AA, Curtiss PE, Ault KT, Sugimoto N, Watabe T, Shiokawa K, Jamrich M, Cho KW, Dawid IB et al (2000) Xlim-1 and LIM domain binding protein 1 cooperate with various transcription factors in the regulation of the goosecoid promoter. Dev Biol 224:470–485

    Article  PubMed  CAS  Google Scholar 

  • Moody SA (1987a) Fates of the blastomeres of the 16-cell stage Xenopus embryo. Dev Biol 119:560–578

    Article  PubMed  CAS  Google Scholar 

  • Moody SA (1987b) Fates of the blastomeres of the 32-cell-stage Xenopus embryo. Dev Biol 122:300–319

    Article  PubMed  CAS  Google Scholar 

  • Newman CS, Chia F, Krieg PA (1997) The XHex homeobox gene is expressed during development of the vascular endothelium: overexpression leads to an increase in vascular endothelial cell number. Mech Dev 66:83–93

    Article  PubMed  CAS  Google Scholar 

  • Nieuwkoop PD, Faber J (1967) Normal table of Xenopus laevis (Daudin). North Holland, Amsterdam

    Google Scholar 

  • Osada SI, Wright CV (1999) Xenopus nodal-related signaling is essential for mesendodermal patterning during early embryogenesis. Development 126:3229–3240

    PubMed  CAS  Google Scholar 

  • Osada SI, Saijoh Y, Frisch A, Yeo CY, Adachi H, Watanabe M, Whitman M, Hamada H, Wright CV (2000) Activin/nodal responsiveness and asymmetric expression of a Xenopus nodal-related gene converge on a FAST-regulated module in intron 1. Development 127:2503–2514

    PubMed  CAS  Google Scholar 

  • Pannese M, Polo C, Andreazzoli M, Vignali R, Kablar B, Barsacchi G, Boncinelli E (1995) The Xenopus homologue of Otx2 is a maternal homeobox gene that demarcates and specifies anterior body regions. Development 121:707–720

    PubMed  CAS  Google Scholar 

  • Penzel R, Oschwald R, Chen Y, Tacke L, Grunz H (1997) Characterization and early embryonic expression of a neural specific transcription factor xSOX3 in Xenopus laevis. Int J Dev Biol 41:667–677

    PubMed  CAS  Google Scholar 

  • Perea-Gomez A, Shawlot W, Sasaki H, Behringer RR, Ang S (1999) HNF3beta and Lim1 interact in the visceral endoderm to regulate primitive streak formation and anterior–posterior polarity in the mouse embryo. Development 126:4499–4511

    PubMed  CAS  Google Scholar 

  • Perea-Gomez A, Rhinn M, Ang SL (2001) Role of the anterior visceral endoderm in restricting posterior signals in the mouse embryo. Int J Dev Biol 45:311–320

    PubMed  CAS  Google Scholar 

  • Piccolo S, Agius E, Leyns L, Bhattacharyya S, Grunz H, Bouwmeester T, De Robertis EM (1999) The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP and Wnt signals. Nature 397:707–710

    Article  PubMed  CAS  Google Scholar 

  • Rebbert ML, Dawid IB (1997) Transcriptional regulation of the Xlim-1 gene by activin is mediated by an element in intron I. Proc Natl Acad Sci U S A 94:9717–9722

    Article  PubMed  CAS  Google Scholar 

  • Rivera-Perez JA, Mallo M, Gendron-Maguire M, Gridley T, Behringer RR (1995) Goosecoid is not an essential component of the mouse gastrula organizer but is required for craniofacial and rib development. Development 121:3005–3012

    PubMed  CAS  Google Scholar 

  • Rodriguez Esteban C, Capdevila J, Economides AN, Pascual J, Ortiz A, Izpisua Belmonte JC (1999) The novel Cer-like protein Caronte mediates the establishment of embryonic left–right asymmetry. Nature 401:243–251

    Article  PubMed  CAS  Google Scholar 

  • Ruiz i Altaba A, Prezioso VR, Darnell JE, Jessell TM (1993) Sequential expression of HNF-3 beta and HNF-3 alpha by embryonic organizing centers: the dorsal lip/node, notochord and floor plate. Mech Dev 44:91–108

    Article  PubMed  CAS  Google Scholar 

  • Saltzman AG, Weinmann R (1989) Promoter specificity and modulation of RNA polymerase II transcription. FASEB J 3:1723–1733

    PubMed  CAS  Google Scholar 

  • Sasai Y (2001) Roles of Sox factors in neural determination: conserved signaling in evolution? Int J Dev Biol 45:321–326

    PubMed  CAS  Google Scholar 

  • Sekido R, Murai K, Kamachi Y, Kondoh H (1997) Two mechanisms in the action of repressor deltaEF1: binding site competition with an activator and active repression. Genes Cells 2:771–783

    Article  PubMed  CAS  Google Scholar 

  • Shawlot W, Deng JM, Behringer RR (1998) Expression of the mouse cerberus-related gene, Cerr1, suggests a role in anterior neural induction and somitogenesis. Proc Natl Acad Sci U S A 95:6198–6203

    Article  PubMed  CAS  Google Scholar 

  • Silva AC, Filipe M, Kuerner KM, Steinbeisser H, Belo JA (2003) Endogenous Cerberus activity is required for anterior head specification in Xenopus. Development 130:4943–4953

    Article  PubMed  CAS  Google Scholar 

  • Simeone A, Acampora D, Gulisano M, Stornaiuolo A, Boncinelli E (1992) Nested expression domains of four homeobox genes in developing rostral brain. Nature 358:687–690

    Article  PubMed  CAS  Google Scholar 

  • Simeone A, Acampora D, Mallamaci A, Stornaiuolo A, D’Apice MR, Nigro V, Boncinelli E (1993) A vertebrate gene related to orthodenticle contains a homeodomain of the bicoid class and demarcates anterior neuroectoderm in the gastrulating mouse embryo. EMBO J 12:2735–2747

    PubMed  CAS  Google Scholar 

  • Steinbeisser H, De Robertis EM (1993) Xenopus goosecoid: a gene expressed in the prechordal plate that has dorsalizing activity. C R Acad Sci III 316:959–971

    PubMed  CAS  Google Scholar 

  • Taira M, Jamrich M, Good PJ, Dawid IB (1992) The LIM domain-containing homeo box gene Xlim-1 is expressed specifically in the organizer region of Xenopus gastrula embryos. Genes Dev 6:356–366

    Article  PubMed  CAS  Google Scholar 

  • Tavares AT, Andrade S, Silva AC, Belo JA (2007) Cerberus is a feedback inhibitor of Nodal asymmetric signaling in the chick embryo. Development 134:2051–2060

    Article  PubMed  CAS  Google Scholar 

  • Thomas P, Beddington R (1996) Anterior primitive endoderm may be responsible for patterning the anterior neural plate in the mouse embryo. Curr Biol 6:1487–1496

    Article  PubMed  CAS  Google Scholar 

  • Thomas PQ, Brown A, Beddington RS (1998) Hex: a homeobox gene revealing peri-implantation asymmetry in the mouse embryo and an early transient marker of endothelial cell precursors. Development 125:85–94

    PubMed  CAS  Google Scholar 

  • Trindade M, Tada M, Smith JC (1999) DNA-binding specificity and embryological function of Xom (Xvent-2). Dev Biol 216:442–456

    Article  PubMed  CAS  Google Scholar 

  • van Grunsven LA, Papin C, Avalosse B, Opdecamp K, Huylebroeck D, Smith JC, Bellefroid EJ (2000) XSIP1, a Xenopus zinc finger/homeodomain encoding gene highly expressed during early neural development. Mech Dev 94:189–193

    Article  PubMed  Google Scholar 

  • Verschueren K, Remacle JE, Collart C, Kraft H, Baker BS, Tylzanowski P, Nelles L, Wuytens G, Su MT, Bodmer R et al (1999) SIP1, a novel zinc finger/homeodomain repressor, interacts with Smad proteins and binds to 5′-CACCT sequences in candidate target genes. J Biol Chem 274:20489–20498

    Article  PubMed  CAS  Google Scholar 

  • Waldrip WR, Bikoff EK, Hoodless PA, Wrana JL, Robertson EJ (1998) Smad2 signaling in extraembryonic tissues determines anterior–posterior polarity of the early mouse embryo. Cell 92:797–808

    Article  PubMed  CAS  Google Scholar 

  • Wilson D, Sheng G, Lecuit T, Dostatni N, Desplan C (1993) Cooperative dimerization of paired class homeo domains on DNA. Genes Dev 7:2120–2134

    Article  PubMed  CAS  Google Scholar 

  • Yamada G, Mansouri A, Torres M, Stuart ET, Blum M, Schultz M, De Robertis EM, Gruss P (1995) Targeted mutation of the murine goosecoid gene results in craniofacial defects and neonatal death. Development 121:2917–2922

    PubMed  CAS  Google Scholar 

  • Yamamoto TS, Takagi C, Hyodo AC, Ueno N (2001) Suppression of head formation by Xmsx-1 through the inhibition of intracellular nodal signaling. Development 128:2769–2779

    PubMed  CAS  Google Scholar 

  • Yamamoto S, Hikasa H, Ono H, Taira M (2003) Molecular link in the sequential induction of the Spemann organizer: direct activation of the cerberus gene by Xlim-1, Xotx2, Mix.1, and Siamois, immediately downstream from Nodal and Wnt signaling. Dev Biol 257:190–204

    Article  PubMed  CAS  Google Scholar 

  • Yang YP, Klingensmith J (2006) Roles of organizer factors and BMP antagonism in mammalian forebrain establishment. Dev Biol 296:458–475

    Article  PubMed  CAS  Google Scholar 

  • Yokouchi Y, Vogan KJ, Pearse RV 2nd, Tabin CJ (1999) Antagonistic signaling by Caronte, a novel Cerberus-related gene, establishes left-right asymmetric gene expression. Cell 98:573–583

    Article  PubMed  CAS  Google Scholar 

  • Zhu L, Marvin MJ, Gardiner A, Lassar AB, Mercola M, Stern CD, Levin M (1999) Cerberus regulates left–right asymmetry of the embryonic head and heart. Curr Biol 9:931–938

    Article  PubMed  CAS  Google Scholar 

  • Zorn AM, Butler K, Gurdon JB (1999) Anterior endomesoderm specification in Xenopus by Wnt/beta-catenin and TGF-beta signalling pathways. Dev Biol 209:282–297

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. A.T. Tavares for the cloning of the Xenopus Cerberus genomic region and A.T. Tavares, S. Marques, and R. Swain for critically reading of this manuscript. A. C. Silva and M. Filipe are recipients of F.C.T. PhD fellowships. This work was supported by research grants from IBB/CBME, LA, F.C.T., and IGC/Fundação Calouste Gulbenkian to J. A. Belo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José António Belo.

Additional information

Communicated by T. Hollemann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, A.C., Filipe, M., Steinbeisser, H. et al. Characterization of Cer-1 cis-regulatory region during early Xenopus development. Dev Genes Evol 221, 29–41 (2011). https://doi.org/10.1007/s00427-011-0357-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-011-0357-5

Keywords

Navigation