Skip to main content
Log in

The polyembryonic wasp Copidosoma floridanum produces two castes by differentially parceling the germ line to daughter embryos during embryo proliferation

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

Eggs of the polyembryonic wasp Copidosoma floridanum undergo a clonal phase of proliferation, which results in the formation of thousands of embryos called secondary morulae and two castes called reproductive and soldier larvae. C. floridanum establishes the germ line early in development, and prior studies indicate that embryos with primordial germ cells (PGCs) develop into reproductive larvae while embryos without PGCs develop into soldiers. However, it is unclear how embryos lacking PGCs form and whether all or only some morulae contribute to the proliferation process. Here, we report that most embryos lacking PGCs form by division of a secondary morula into one daughter embryo that inherits the germ line and another that does not. C. floridanum embryos also incorporate 5-bromo-2′-deoxyuridine (BrdU), which allows PGCs and other cell types to be labeled during the S phase of the cell cycle. Continuous BrdU labeling indicated that all secondary morulae cycle during the proliferation phase of embryogenesis. Double labeling with BrdU and the mitosis marker anti-phospho-histone H3 indicated that the median length of the G2 phase of the cell cycle was 18 h with a minimum duration of 4 h. Mitosis of PGCs and presumptive somatic stem cells in secondary morulae was asynchronous, but cells of the inner membrane exhibited synchronous mitosis. Overall, our results suggest that all secondary morulae contribute to the formation of new embryos during the proliferation phase of embryogenesis and that PGCs are involved in regulating both proliferation and caste formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aherne WA, Camplejohn RS, Wright NA (1977) An introduction to cell population kinetics. Arnold, London

    Google Scholar 

  • Baehrecke EH, Grbic M, Strand MR (1992) Serosa ontogeny in two embryonic morphs of Copidosoma floridanum, the influence of host hormones. J Exp Zool 262:30–39

    Article  Google Scholar 

  • Baehrecke EH, Aiken JM, Dover BA, Strand MR (1993) Ecdysteroid induction of embryonic morphogenesis in a parasitic wasp. Dev Biol 158:275–287

    Article  CAS  PubMed  Google Scholar 

  • Buning J (1994) The insect ovary: ultrastructure, previtellogenic growth and evolution. Chapman and Hall, New York

    Google Scholar 

  • Cheshier S, Morrison S, Liao X, Wissman I (1999) In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells. Proc Natl Acad Sci USA 96:3120–3125

    Article  CAS  PubMed  Google Scholar 

  • Corley LS, White MT, Strand MR (2005) Both endogenous and environmental factors affect embryo proliferation in the polyembryonic wasp Copidosoma floridanum. Evol Dev 7:115–121

    Article  CAS  PubMed  Google Scholar 

  • Cruz YP (1981) A sterile defender morph in a polyembryonic hymenopterous parasite. Nature 294:446–447

    Article  Google Scholar 

  • De Cuevas M, Lilly MA, Spradling AC (1997) Germline cyst formation in Drosophila. Annu Rev Genet 31:405–428

    Article  PubMed  Google Scholar 

  • Dearden PK (2006) Germ cell development in the honeybee (Apis mellifera); Vasa and Nanos expression. BMC Dev Biol 6:6

    Article  PubMed  Google Scholar 

  • Donnell DM, Corley LS, Chen G, Strand MR (2004) Inheritance of germ cells mediates caste determination in a polyembryonic wasp. Proc Natl Acad Sci USA 101:10095–10100

    Article  CAS  PubMed  Google Scholar 

  • Extavour CG, Akam M (2003) Mechanisms of germ cell specification across the metazoans: epigenesis and preformation. Development 130:5869–5884

    Article  CAS  PubMed  Google Scholar 

  • Foe VE (1989) Mitotic domains reveal early commitment of cells in Drosophila embryos. Development 107:1–22

    CAS  PubMed  Google Scholar 

  • Gardiner EMM, Strand MR (2000) Hematopoiesis in larval Pseudoplusia includens and Spodoptera frugiperda. Arch Insect Biochem Physiol 43:147–164

    Article  CAS  PubMed  Google Scholar 

  • Gardner A, Hardy ICW, Taylor PD, West SA (2007) Spiteful soldiers and sex ratio conflict in polyembryonic wasps. Am Nat 169:519–533

    Article  PubMed  Google Scholar 

  • Gilbert LI, Rybczynski R, Warren JT (2002) Control and biochemical nature of the ecdysteroidogenic pathway. Annu Rev Entomol 47:883–912

    Article  CAS  PubMed  Google Scholar 

  • Giron D, Strand MR (2004) Host resistance and the evolution of kin recognition in polyembryonic wasps. Proc R Soc Lond B Biol Sci 271:S395–S398

    Article  Google Scholar 

  • Giron D, Dunn D, Hardy ICW, Strand MR (2004) Aggression by polyembryonic wasp soldiers correlates with kinship but not resource competition. Nature 430:676–679

    Article  CAS  PubMed  Google Scholar 

  • Giron D, Ross KG, Strand MR (2007) The presence of soldier larvae determines the outcome of competition in a polyembryonic wasp. J Evol Biol 20:165–172

    Article  CAS  PubMed  Google Scholar 

  • Grbic M (2003) Polyembryony in parasitic wasps: evolution of a novel mode of development. Int J Dev Biol 47:633–642

    PubMed  Google Scholar 

  • Grbic M, Ode PJ, Strand MR (1992) Sibling rivalry and brood sex ratios in polyembryonic wasps. Nature 360:254–256

    Article  Google Scholar 

  • Grbic M, Nagy LM, Carroll SB, Strand M (1996) Polyembryonic development: insect pattern formation in a cellularized environment. Development 122:795–804

    CAS  PubMed  Google Scholar 

  • Grbic M, Nagy LM, Strand MR (1998) Development of polyembryonic insects: a major departure from typical embryogenesis. Dev Genes Evol 208:69–81

    Article  CAS  PubMed  Google Scholar 

  • Harvey JA, Corley LS, Strand MR (2000) Competition induces adaptive shifts in caste ratios of a polyembryonic wasp. Nature 406:183–186

    Article  CAS  PubMed  Google Scholar 

  • Hegner RW (1914) Studies on germ cells. J Morph 26:495–561

    Article  Google Scholar 

  • Hendzel MJ, Wei Y, Mancini MA, van Hooser A, Ranalli T, Brinkley BR, Bazett-Jones DP, Allis CD (1997) Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 106:348–360

    Article  CAS  PubMed  Google Scholar 

  • Ivanova-Kasas OM (1972) Polyembryony in insects. In: Counce S, Waddington CH (eds) Developmental systems, vol. 1. Insects. Academic, New York, pp 243–271

    Google Scholar 

  • Lasko PF, Ashburner M (1988) The product of the Drosophila gene vasa is very similar to eukaryotic initiation factor-4A. Nature 335:611–617

    Article  CAS  PubMed  Google Scholar 

  • Nijhout HF (2003) The control of body size in insects. Dev Biol 261:1–9

    Article  CAS  PubMed  Google Scholar 

  • Ode PJ, Strand MR (1995) Progeny and sex allocation decisions of the polyembryonic wasp Copidosoma floridanum. J Anim Ecol 64:213–224

    Article  Google Scholar 

  • Patterson JT (1921) The development of Paracopidosomopsis. J Morph 36:1–69

    Article  Google Scholar 

  • Rabinovitch PS (1983) Regulation of human fibroblast growth rate by both noncycling cell fraction and transition probability is shown by growth in 5-bromodeoxyuridine followed by Hoechst 33258 flow cytometry. Proc Natl Acad Sci USA 80:2951–2955

    Article  CAS  PubMed  Google Scholar 

  • Sander K (1996) Variants of embryonic patterning mechanisms in insects: Hymenoptera and Diptera. Semin Cell Dev Biol 7:573–582

    Article  Google Scholar 

  • Silvestri F (1937) Insect polyembryony and its general biological aspects. Bull Mus Comp Zool Harvard Univ 81:468–496

    Google Scholar 

  • Sommer R, Tautz D (1991) Asynchronous mitotic domains during blastoderm formation in Musca domestica L. (Diptera) Roux's arch. Dev Biol 199:373–376

    Google Scholar 

  • Strand MR (1989) Development of the polyembryonic parasitoid Copidosoma floridanum in Trichoplusia ni. Entomol Exp Appl 50:37–46

    Article  Google Scholar 

  • Strand MR (2009) Polyembryony. In: Carde R, Resch V (eds) Encyclopedia of insects, 2nd edn. Academic, New York, pp 928–932

    Google Scholar 

  • Strand MR, Grbic M (1997) The development and evolution of polyembryonic insects. Curr Top Dev Biol 35:121–159

    Article  CAS  PubMed  Google Scholar 

  • Truman JW, Bate M (1988) Spatial and temporal patterns of neurogenesis in the central nervous system of Drosophila melanogaster. Dev Biol 125:145–157

    Article  CAS  PubMed  Google Scholar 

  • Zhurov V, Terzin T, Grbic M (2004) Early blastomere determines embryo proliferation and caste fate in a polyembryonic wasp. Nature 43:764–769

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. A. Johnson, M. Smith, and G. Chen for the assistance during the study. Funding for this project was provided by National Science Foundation Grant IOS 0414610 to MRS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Strand.

Additional information

Communicated by P. Simpson

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gordon, S.D., Strand, M.R. The polyembryonic wasp Copidosoma floridanum produces two castes by differentially parceling the germ line to daughter embryos during embryo proliferation. Dev Genes Evol 219, 445–454 (2009). https://doi.org/10.1007/s00427-009-0306-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-009-0306-8

Keywords

Navigation