Skip to main content
Log in

Engrailed in cephalopods: a key gene related to the emergence of morphological novelties

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

The engrailed gene is a transcription factor required in numerous species for major developmental steps (neurogenesis, limb development, boundary establishment), and its evolution is known to be closely related to the evolution of the metazoan body plan. Cephalopods exhibit numerous morphological peculiarities among molluscs, such as a direct development, a complex sensory and nervous system (eyes, brain, giant axons), a reduced shell, a funnel, and a brachial crown. We assessed a potential recruitment of engrailed in the development of these derived traits and examined the expression pattern of engrailed during the organogenesis of the cuttlefish Sepia officinalis, by immunostaining. Engrailed was detected at the margin of the prospective internal shell, which is consistent with studies on molluscs having an external shell and confirms a conserved role of engrailed in delimitating the molluscan shell compartment. Interestingly, unexpected patterns were early detected in the emerging arms, funnel and optic vesicles and latter in tentacles and eye lids. We also identified an engrailed cognate in the squid Loligo, which provides new evidence that engrailed in molluscs is not restricted to a ‘shell function’ and has been recruited in the mollusc lineage for the emergence of morphological novelties in cephalopods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abzhanov A, Kaufman TC (2000) Evolution of distinct expression patterns for engrailed paralogues in higher crustaceans (Malacostraca). Dev Genes Evol 210:493–506

    Article  CAS  Google Scholar 

  • Boletzky S (1988) Characteristics of cephalopod embryogenesis. In: Wiedmann JKJ (ed) Cephalopods—present and past. Schweizerbartsche Verlagsbuchhandlung, Stuttgart pp 167–179

    Google Scholar 

  • Boletzky S, Erlwein B, Hofmann DK (2006) The Sepia egg: a showcase of cephalopod embryology. Vie Milieu Life Environ 56:191–201

    Google Scholar 

  • Brunet I, Weinl C, Piper M, Trembleau A, Volovitch M, Harris W, Prochiantz A, Holt C (2005) The transcription factor Engrailed-2 guides retinal axons. Nature 438:94–98

    Article  PubMed  CAS  Google Scholar 

  • Byrne M, Cisternas P, Elia L, Relf B (2005) Engrailed is expressed in larval development and in the radial nervous system of Patiriella sea stars. Dev Genes Evol 215:608–617

    Article  PubMed  CAS  Google Scholar 

  • Fjose A, Mcginnis WJ, Gehring WJ (1985) Isolation of a homeobox-containing gene from the engrailed region of Drosophila and the spatial distribution of its transcripts. Nature 313:284–289

    Article  PubMed  CAS  Google Scholar 

  • Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151:1531–1545

    PubMed  CAS  Google Scholar 

  • Friedman GC, O’Leary DDM (1996) Retroviral misexpression of engrailed genes in the chick optic tectum perturbs the topographic targeting of retinal axons. J Neurosci 16:5498–5509

    PubMed  CAS  Google Scholar 

  • Gehring WJ (2005) New perspectives on eye development and the evolution of eyes and photoreceptors. J Heredity 96:171–184

    Article  CAS  Google Scholar 

  • Gibert J-M (2002) The evolution of engrailed genes after duplication and speciation events. Dev Genes Evol 212:307–318

    Article  PubMed  CAS  Google Scholar 

  • Gritzan U, Hatini V, DiNardo S (1999) Mutual antagonism between signals secreted by adjacent wingless and engrailed cells leads to specification of complementary regions of the Drosophila parasegment. Development 126:4107–4115

    PubMed  CAS  Google Scholar 

  • Hidalgo A (1998) Growth and patterning from the engrailed interface. Int J Dev Biol 42:317–324

    PubMed  CAS  Google Scholar 

  • Harris WA (1997) Pax-6: where to be conserved is not conservative. Proc Natl Acad Sci 94:2421–2426

    Article  Google Scholar 

  • Hartmann B, Lee PN, Kang YY, Tomarev S, de Couet HG, Callaerts P (2003) Pax6 in the sepiolid squid Euprymna scolopes: evidence for a role in eye, sensory organ and brain development. Mech Dev 120:177–183

    Article  PubMed  CAS  Google Scholar 

  • Holland L, Kene M, Williams N, Holland N (1997) Sequence and embryonic expression of the amphioxus engrailed gene (AmphiEn): the metameric pattern of transcription resembles that of its segment-polarity homolog in Drosophila. Development 124:1723–1732

    PubMed  CAS  Google Scholar 

  • Jacobs DK, Wray CG, Wedeen CJ, Kostriken R, DeSalle R, Staton JL, Gates RD, Lindberg DR (2000) Molluscan engrailed expression, serial organization and shell evolution. Evol Dev 2:340–347

    Article  PubMed  CAS  Google Scholar 

  • Joyner AL (1996) Engrailed, Wnt and Pax genes regulate midbrain-hindbrain development. Trends Genet 12:15–20

    Article  PubMed  CAS  Google Scholar 

  • Kornberg T (1981) Engrailed: a gene controlling compartment and segment formation in Drosophila. Proc Natl Acad Sci 78:1095–1099

    Article  PubMed  CAS  Google Scholar 

  • Lee PN, Callaerts P, de Couet HG, Martindale MQ (2003) Cephalopod Hox genes and the origin of morphological novelties. Nature 424:1061–1965

    Article  PubMed  CAS  Google Scholar 

  • Lemaire J (1970) Table de développement embryonnaire de Sepia officinalis L. (Mollusque Céphalopode). Bull Soc Zool 95:773–782

    Google Scholar 

  • Lemaire J, Richard A (1978) Organogenèse de l’oeil du Céphalopode Sepia officinalis L. Bull Soc Zool Fr 103:373–377

    Google Scholar 

  • Logan C, Wizenmann A, Drescher U, Monschau B, Bonhoeffer F, Lumsden A (1996) Rostral optic tectum acquires caudal characteristic following ectopic Engrailed expression. Curr Biol 6:1006–1014

    Article  PubMed  CAS  Google Scholar 

  • Lowe CJ, Wray GA (1997) Radical alterations in the roles of homeobox genes during echinoderm evolution. Nature 389:718–721

    Article  PubMed  CAS  Google Scholar 

  • Moshel SM, Levine M, Collier JR (1998) Shell differentiation and engrailed expression in the Ilyanassa embryo. Dev Genes Evol 208:135–141

    Article  PubMed  CAS  Google Scholar 

  • Nederbragt AJ, van Loon AE, Dictus W (2002) Expression of Patella vulgata orthologs of engrailed and dpp-BMP2/4 in adjacent domains during molluscan shell development suggests a conserved compartment boundary mechanism. Dev Biol 246:341–355

    Article  PubMed  CAS  Google Scholar 

  • Patel NH, Martin-Blanco E, Coleman KG, Poole SJ, Ellis MC, Kornberg TB, Goodman CS (1989) Expression of engrailed proteins in arthropods, annelids and chordates. Cell 58:955–968

    Article  PubMed  CAS  Google Scholar 

  • Plaza S, Langlois M-C, Turque N, LeCornet S, Bailly M, Bègue A, Quatannens B, Dozier C, Saule S (1997) The homeobox containing Engrailed (En-1) product down-regulates the expression of Pax-6 through a DNA binding-independent mechanism. Cell Growth Differ 8:1115–1125

    PubMed  CAS  Google Scholar 

  • Quiring R, Walidorf U, Kloter U, Gehring WJ (1994) Homology of the eyeless gene of Drosophila to the Small eye gene in mice and Aniridia in humans. Science 265:785–789

    Article  PubMed  CAS  Google Scholar 

  • Raftery LA, Sanicola M, Blackman RK, Gelbart WM (1991) The relationship of decapentaplegic and engrailed expression in Drosophila imaginal disks: do these genes mark the anterior–posterior compartment boundary? Development 113:27–33

    PubMed  CAS  Google Scholar 

  • Seaver EC, Kaneshige LM (2006) Expression of ‘segmentation’ genes during larval and juvenile development in the polychaetes Capitella sp. I and H. elegans. Dev Biol 289:179–194

    Article  PubMed  CAS  Google Scholar 

  • Seaver EC, Paulson DA, Irvine SQ, Martindale MQ (2001) The spatial and temporal expression of Ch-en, the engrailed gene in the polychaete Chaetopterus, does not support a role in body segmentation. Dev Biol 236:195–209

    Article  PubMed  CAS  Google Scholar 

  • Spiess PE (1972) Organogenese des Schalendrüsenkomplexes bei einige coleioden Cephalopoden des Mittelmeeres. Rev Suisse Zool 79:167–226

    Google Scholar 

  • Tomarev SI, Callaerts P, Kos L, Zinovieva R, Halder G, Gehring W, Piatigorsky J (1997) Squid Pax-6 and eye development. Proc Natl Acad Sci USA 94:2421–2426

    Article  PubMed  CAS  Google Scholar 

  • Wanninger A, Haszprunar G (2001) The expression of an engrailed protein during embryonic shell formation in the tuskshell Antalis entalis (Mollusca, Scaphopoda). Evol Dev 3:312–321

    Article  PubMed  CAS  Google Scholar 

  • Wedeen CJ, Weisblat DA (1991) Segmental expression of an engrailed-class gene during early development and neurogenesis in an annelid. Development 113:805–814

    PubMed  CAS  Google Scholar 

  • Wray CG, Jacobs DK, Kostriken R, Vogler AP, Baker R, DeSalle R (1995) Homologues of the engrailed gene from five molluscan classes. FEBS Lett 365:71–74

    Article  PubMed  CAS  Google Scholar 

  • Yaguchi S, Nakajima Y, Wang D, Burke RD (2006) Embryonic expression of engrailed in sea urchins. Gene Expr Patterns 6:566–571

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank S.v. Boletzky and the Observatoire Océanologique of Banyuls (Université Pierre et Marie Curie, Paris 6), L. Dickel, C. Alves and the Station Marine of Luc/Mer (Université of Caen) for providing biological material. We are grateful to M. Martin for technical help. We especially thank J. S. Deutsch and S.v. Boletzky for reading the manuscript and critical comments. The 4D9 anti-engrailed/invected antibody developed by Goodman was obtained from the Developmental studies Hybridoma Bank developed under the auspices of the NICHD and maintained at the University of Iowa, Department of Biological Sciences, Iowa City, IA52242.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Baratte.

Additional information

Communicated by D.A. Weisblat

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baratte, S., Andouche, A. & Bonnaud, L. Engrailed in cephalopods: a key gene related to the emergence of morphological novelties. Dev Genes Evol 217, 353–362 (2007). https://doi.org/10.1007/s00427-007-0147-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-007-0147-2

Keywords

Navigation