Skip to main content
Log in

A genomewide survey of developmentally relevant genes in Ciona intestinalis

VII. Molecules involved in the regulation of cell polarity and actin dynamics

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

In the present study, genes involved in the pathways that establish cell polarity and cascades regulating actin dynamics were identified in the completely sequenced genome of Ciona intestinalis, a basal chordate. It was revealed that the Ciona genome contains orthologous genes of each component of aPKC-Par and PCP pathways and WASP/WAVE/SCAR and ADF/cofilin cascades, with less redundancy than the vertebrate genomes, suggesting that the conserved pathways/cascades function in Ciona development. In addition, the present study found that the orthologous proteins of five gene groups (Tc10, WRCH, RhoD, PLC-L, and PSKH) are conserved in humans and Ciona but not in Drosophila melanogaster, suggesting a similarity in the gene composition of Ciona to that of vertebrates. Ciona intestinalis, therefore, may provide refined clues for the study of vertebrate development and evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1A–D.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  • Aelst LV, Symons M (2002) Role of Rho family GTPase in epithelial morphogenesis. Genes Dev 16:1032–1054

    Article  PubMed  Google Scholar 

  • Blot J, Chartrain I, Roghi C, Philippe M, Tassan JP (2002) Cell cycle regulation of pEg3, a new Xenopus protein kinase of the KIN1/PAR-1/MARK family. Dev Biol 241:327–338

    Article  PubMed  CAS  Google Scholar 

  • Chiba S, Awazu S, Itoh M, Chin-Bow ST, Satoh N, Satou Y, Hastings KEM (2003) A genomewide survey of developmentally relevant genes in Ciona intestinalis. IX. Genes for muscle structural proteins. Dev Genes Evol DOI 10.1007/s00427-003-0324-x

  • Choi S, Han J (2002) Xenopus CDC42 regulates convergent extension movement during gastrulation through Wnt/Ca2+ signaling pathway. Dev Biol 244:342–357

    Article  PubMed  CAS  Google Scholar 

  • Conklin EG (1905a) The organization and cell lineage of the ascidian egg. J Acad Natl Sci 13:1–119

    Google Scholar 

  • Conklin EG (1905b) Organ-forming substances in the eggs of ascidians. Biol Bull Mar Biol Lab Woods Hole 8:205–230

    Article  Google Scholar 

  • Darken RS, Scola AM, Rakeman AS, Das G, Mlodzik M, Wilson PA (2002) The planar polarity gene strabismus regulates convergent extension movement in Xenopus. EMBO J 21:976–985

    Article  PubMed  CAS  Google Scholar 

  • Dehal P, Satou Y, Campbell RK et al (2002) The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298:2157–2167

    Article  PubMed  CAS  Google Scholar 

  • Emmons S, Phan H, Calley J, Chen W, James B, Manseau L (1995) cappuccino, a Drosophila maternal effect gene required for polarity of the egg and embryo, is related to the vertebrate limb deformity locus. Genes Dev 9:2482–2494

    Article  PubMed  CAS  Google Scholar 

  • Erickson JW, Cerione RA (2001) Multiple roles for Cdc42 in cell regulation. Curr Opin Cell Biol 13:153–157

    Article  PubMed  CAS  Google Scholar 

  • Ferl RJ, Manak MS, Reyers MF (2002) The 14-3-3s. Genome Biol 3:3010.1–3010.7

    Article  Google Scholar 

  • Habas R, Kato Y, He X (2001) Wnt/Frizzled activation of Rho regulation vertebrate gastrulation and requires a novel Formin homology protein Daam1. Cell 107:843–854

    Article  PubMed  CAS  Google Scholar 

  • Hino K, Satou Y, Yagi K, Satoh N (2003) A genomewide survey of developmentally relevant genes in Ciona intestinalis. VI. Genes for Wnt, TGFβ, Hedgehog and JAK/STAT signaling pathways. Dev Genes Evol (in press)

  • Hotta K, Takahashi H, Asakura T, Saito B, Takatori N, Satou Y, Satoh N (2000) Characterization of Brachyury-downstream notochord genes in the Ciona intestinalis embryo. Dev Biol 224:69–80

    Article  PubMed  CAS  Google Scholar 

  • Jaffer ZM, Chernoff J (2002) p21-activated kinases; three more join the Pak. Int J Biochem Cell Biol 34:713–717

    Article  PubMed  CAS  Google Scholar 

  • Katoh M (2002) Molecular cloning and characterization of WRCH2 on human chromosome 15q15. Int J Oncol 20:977–982

    PubMed  CAS  Google Scholar 

  • Kuhl M, Sheldahl LC, Park M, Miller JR, Moon RT (2000) The Wnt/Ca2+ pathway. Trends Genet 16:279–283

    Article  PubMed  CAS  Google Scholar 

  • Kuhl M, Geis K, Sheldahl LC, Pukrop T, Moon RT, Wedlich D (2001) Antagonistic regulation of convergent extension movement in Xenopus by Wnt/β-catenin and Wnt/Ca2+ signaling. Mech Dev 106:61–76

    Article  PubMed  CAS  Google Scholar 

  • Levitan DJ, Boyd L, Mello CC, Kemphues KJ, Stinchcomb DT (1994) par-2, a gene required for blastomere asymmetry in Caenorhabditis elegans, encodes zinc-finger and ATP-binding motifs. Proc Natl Acad Sci USA 91:6108–6112

    Article  PubMed  CAS  Google Scholar 

  • Machesky LM, Reeves E, Wientjes F, Mattheyse FJ, Grogan A, Totty NF, Burlingame AL, Hsuan JJ, Segal AW (1997) Mammalian actin-related protein 2/3 complex localizes to regions of lamellipodial protrusion and is composed of evolutionarily conserved proteins. Biochem J 328:105–112

    PubMed  CAS  Google Scholar 

  • Maciver SK, Hussey PJ (2002) The ADF/cofilin family: actin-remodeling proteins. Genome Biol 3:3007.1–3007.12

    Article  Google Scholar 

  • Miki H, Suetsugu S, Takenawa T (1998) WAVE, a novel WASP-family protein involved in actin reorganization induced by Rac. EMBO J 17:6932–6941

    Article  PubMed  CAS  Google Scholar 

  • Morton DG, Shakes DC, Nugent S, Dichoso D, Wang W, Golden A, Kemphues KJ (2002) The Caenorhabditis elegans par-5 gene encodes a 14-3-3 protein required for cellular asymmetry in the early embryo. Dev Biol 241: 47–58

    Article  PubMed  CAS  Google Scholar 

  • Moscat J, Diaz-Meco MT (2000) The atypical protein kinase Cs. EMBO Rep 1:399–403

    Article  PubMed  CAS  Google Scholar 

  • Munro EM, Odell GM (2002a) Morphogenetic pattern formation during ascidian notochord formation is regulative and highly robust. Development 129:1–12

    PubMed  CAS  Google Scholar 

  • Munro EM, Odell GM (2002b) Polarized basolateral cell motility underlies invagination and convergent extension of the ascidian notochord. Development 129:13–24

    PubMed  CAS  Google Scholar 

  • Myers DC, Sepich DS, Solnica-Krezel L (2002) Convergence and extension in vertebrate gastrulae: cell movements according to or in search of identity? Trends Genet 18:447–455

  • Niwa R, Nagata-Ohashi K, Takeichi M, Mizuno K, Uemura T (2002) Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/Cofilin. Cell 108:233–246

    Article  PubMed  CAS  Google Scholar 

  • Ohno S (2001) Intercellular junctions and cellular polarity: the PAR-aPKC complex, a conserved core cassette playing fundamental roles in cell polarity. Curr Opin Cell Biol 13:641–648

    Article  PubMed  CAS  Google Scholar 

  • Palmer RH, Ridden J, Parker PJ (1995) Cloning and expression patterns of two members of a novel protein-kinase-C-related kinase family. Eur J Biochem 15:344–351

    Article  Google Scholar 

  • Rappleye CA, Paredez AR, Smith CW, McDonald KL, Aroian RV (1999) The coronin-like protein POD-1 is required for anterior-posterior axis formation and cellular architecture in the nematode Caenorhabditis elegans. Genes Dev 13:2838–2851

    Article  PubMed  CAS  Google Scholar 

  • Reverberi G (1975) Some effects of cytochalasin B on the eggs and tadpoles of ascidians. Acta Embryol Exp 1975:137–158

    Google Scholar 

  • Rohatgi R, Ma L, Miki H, Lopez M, Kirchhausen T, Takenawa T, Kirschner MW (1999) The interaction between N-WASP and the Arp2/3 complex links cdc-42-dependent signals to actin assembly. Cell 97:221–231

    Article  PubMed  CAS  Google Scholar 

  • Rose LS, Kemphues KJ (1998) Early patterning of the C. elegans embryo. Annu Rev Genet 32:521–545

    Article  PubMed  CAS  Google Scholar 

  • Sasakura Y, Ogasawara M, Makabe KW (1998) Maternally localized RNA encoding a serine/threonine protein kinase in the ascidian, Halocynthia roretzi. Mech Dev 76:161–163

    Article  PubMed  CAS  Google Scholar 

  • Sasakura Y, Ogasawara M, Makabe KW (2000) Two pathways of maternal RNA localization at the posterior-vegetal cytoplasm in early ascidian embryos. Dev Biol 220:365–378

    Article  PubMed  CAS  Google Scholar 

  • Satou Y, Imai KS, Levine M, Kohara Y, Rokhsar D, Satoh N (2003a) A genomewide survey of developmentally relevant genes in Ciona intestinalis. I. Genes for bHLH transcription factors. Dev Genes Evol DOI 10.1007/s00427-003-0319-7

  • Satou Y, Sasakura Y, Yamada L, Imai KS, Satoh N, Degnan B (2003b) A genomewide survey of developmentally relevant genes in Ciona intestinalis. V. Genes for receptor tyrosine kinase pathway and Notch signaling pathway. Dev Genes Evol DOI 10.1007/s00427-003-0317-9

  • Sawada T, Osanai K (1981) The cortical contraction related to the ooplasmid segregation in Ciona intestinalis eggs. Roux's Arch Dev Biol 190:208–214

    Article  Google Scholar 

  • Soderling TR (1999) The Ca2+-calmodulin-dependent protein kinase cascade. Trends Biosci 24:232–236

    Article  CAS  Google Scholar 

  • Suetsugu S, Miki H, Takenawa T (2002) Spatial and temporal regulation of actin polymerization for cytoskeleton formation through Arp2/3 complex and WASP/WAVE proteins. Cell Motil Cytoskel 51:113–122

    Article  CAS  Google Scholar 

  • Takai Y, Sasaki T, Matozaki T (2001) Small GTP-binding proteins. Physiol Rev 81:153–208

    PubMed  CAS  Google Scholar 

  • Tao W, Pennica D, Xu L, Kalejta RF, Levine AJ (2001) Wrch-1, a novel member of the Rho gene family that is regulated by Wnt-1. Genes Dev 15:1796–1807

    Article  PubMed  CAS  Google Scholar 

  • Tree DRP, Shulman JM, Rousset R, Scott MP, Gubb D, Axelrod JD (2002) Prickle mediates feedback amplification to generate asymmetric planar cell polarity signaling. Cell 109:371–381

    Article  PubMed  CAS  Google Scholar 

  • Wallingford JB, Fraser SE, Harland RM (2002a) Convergent extension: the molecular control of polarized cell movement during embryonic development. Dev Cell 2:695–706

    Article  PubMed  CAS  Google Scholar 

  • Wallingford JB, Goto T, Keller R, Harland RM (2002b) Cloning and expression of Xenopus Prickle, an orthologue of a Drosophila planar cell polarity gene. Mech Dev 116:183–186

    Article  PubMed  CAS  Google Scholar 

  • Webb BL, Hirst SJ, Giembycz MA (2000) Protein kinase C isoenzymes: a review of their structure, regulation and role in regulating airways smooth muscle tone and mitogenesis. Br J Pharm 130:1433–1452

    Article  CAS  Google Scholar 

  • Williams RL (1999) Mammalian phosphoinositide-specific phospholipase C. Biochim Biophys Acta 1441:255–267

    Article  PubMed  CAS  Google Scholar 

  • Yoshida S, Satou Y, Satoh N (1997) Maternal genes with localized mRNA and pattern formation of the ascidian embryo. Cold Spring Harvor Symp Quant Biol 62:89–96

    Article  CAS  Google Scholar 

  • Zalokar M (1974) Effect of colchicine and cytochalasin B on ooplasmic segregation of ascidian eggs. Roux's Arch Dev Biol 175:243–248

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Grants-in-Aid for Scientific Research from MEXT, Japan to Y. Satou (13044001) and N.S. (12202001). Y. Sasakura was a Postdoctoral Fellow of JSPS with a research grant (14000967). We thank Kazuko Hirayama, Chikako Imaizumi, Asako Fujimoto, and Hisayoshi Ishikawa for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nori Satoh.

Additional information

Edited by D. Tautz

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sasakura, Y., Yamada, L., Takatori, N. et al. A genomewide survey of developmentally relevant genes in Ciona intestinalis . Dev Genes Evol 213, 273–283 (2003). https://doi.org/10.1007/s00427-003-0325-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-003-0325-9

Keywords

Navigation