Skip to main content
Log in

Bimanual force control: cooperation and interference?

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

Three experiments were designed to determine the level of cooperation or interference observed from the forces generated in one limb on the forces exhibited by the contralateral limb when one or both limbs were producing a constant force (Experiment 1), one limb was producing a dynamic force while the other limb was producing a constant force (Experiment 2), and both limbs were producing dynamic force patterns (Experiment 3). The results for both Experiments 1 and 2 showed relatively strong positive time series cross correlations between the left and right limb forces indicating increases or decreases in the forces generated by one limb resulted in corresponding changes in the forces produced by the homologous muscles of the contralateral limb. Experiment 3 required participants to coordinate 1:1 and 1:2 rhythmical bimanual force production tasks when provided Lissajous feedback. The results indicated very effective performance of both bimanual coordination patterns. However, identifiable influences of right limb forces on the left limb force time series were observed in the 1:2 coordination pattern but not in the 1:1 pattern. The results of all three experiments support the notion that neural crosstalk is partially responsible for the stabilities and instabilities associated with bimanual coordination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aramaki, Y., Honda, M., Okada, T., & Sadato, N. (2006). Neural correlates of the spontaneous phase transition during bimanual coordination. Cerebral Cortex, 16, 1338–1348.

    Article  PubMed  Google Scholar 

  • Aramaki, Y., Osu, R., & Sadato, N. (2010). Resource-demanding versus cost-effective bimanual interaction in the brain. Experimental Brain Research, 203, 407–418.

    Article  PubMed  Google Scholar 

  • Armatas, C. A., & Summers, J. J. (2001). The influence of task characteristics on the intermanual asymmetry of motor overflow. Journal of Clinical Experimental Neuropsycholology, 23, 557–567.

    Article  Google Scholar 

  • Armatas, C. A., Summers, J. J., & Bradshaw, J. L. (1996). Handedness and performance variability as factors influencing mirror movement occurrence. Journal of Clinical Experimental Neuropsychology, 18, 823–835.

    Article  PubMed  Google Scholar 

  • Barral, J., De Pretto, M., Debû, B., & Hauert, C. A. (2010). Activation and inhibition of bimanual movements in school-aged children. Human Physiology, 36, 47–57.

    Article  Google Scholar 

  • Barral, J., Debû, B., & Rival, C. (2006). Developmental changes in unimanual and bimanual aiming movements. Developmental Neuropsycholgy, 29, 415–429.

    Article  Google Scholar 

  • Beets, I. A. M, Gooijers, J., Boisgontier, M. P., Pauwels, L., Coxon, J. P., Wittenberg, G., & Swinnen, S. P. (2014). Reduced neural differentiation between feedback conditions after bimanual coordination with and without augmented feedback. Cerebral Cortex. doi:10.1093/cercor/bhu005

  • Boyles, J., Panzer, S., & Shea, C. H. (2012). Increasingly complex bimanual multi-frequency coordination patterns are equally easy to perform with on-line relative velocity feedback. Experimental Brain Research, 216, 515–525.

    Article  PubMed  Google Scholar 

  • Buchanan, J. J., Park, J. H., & Shea, C. H. (2006). Target width scaling in a repetitive aiming task: switching between cyclical and discrete units of action. Experimental Brain Research, 175, 710–725.

    Article  PubMed  Google Scholar 

  • Buchanan, J. J., & Ryu, Y. U. (2012). Scaling movement amplitude: adaptation of timing and amplitude control in a bimanual task. Journal of Motor Behavior, 44, 135–147.

    Article  PubMed  Google Scholar 

  • Byblow, W. D., Bysouth-Young, D., Summers, J. J., & Carson, R. G. (1998). Performance asymmetries and coupling dynamics in the acquisition of multifrequency bimanual coordination. Psychologoical Research, 61, 56–70.

    Article  Google Scholar 

  • Byblow, W. D., & Goodman, D. (1994). Performance asymmetries in multifrequency coordination. Human Movement Science, 13, 147–174.

    Article  Google Scholar 

  • Cardoso de Oliveira, S. (2002). The neuronal basis of bimanual coordination: recent neurophysiological evidence and functional models. Acta Psychologica, 110, 139–159.

    Article  PubMed  Google Scholar 

  • Carson, R. G., Byblow, W. D., Abernethy, B., & Summers, J. J. (1996). The contribution of inherent and incidental constraints to intentional switching between patterns of bimanual coordination. Human Movement Science, 15, 565–589.

    Article  Google Scholar 

  • Carson, R. G., Riek, C. J., Smethurst, J. F., Lison Parraga, J. F., & Byblow, W. D. (2000). Neuromuscular-skeletal constraints upon the dynamics of unimanual and bimanual coordination. Experimental Brain Research, 131, 196–214.

    Article  PubMed  Google Scholar 

  • Cattaert, D., Semjen, A., & Summers, J. J. (1999). Simulating a neural cross-talk model for between-hand interference during bimanual circle drawing. Biological Cybernetics, 81, 343–358.

    Article  PubMed  Google Scholar 

  • Cincotta, M., Giovannelli, F., Borgheresi, A., Balestrieri, F., Vanni, P., Ragazzoni, A., & Ziemann, U. (2006). Surface electromyography shows increased mirroring in Parkinson’s disease patients without overt mirror movements. Movement Disorders, 21, 1461–1465.

    Article  PubMed  Google Scholar 

  • Cohen, L. (1971). Synchronous bimanual movements performed by homologous and non-homologous muscles. Perceptual Motor Skills, 32, 639–644.

    Article  PubMed  Google Scholar 

  • Deutsch, D. (1983). The generation of two isochronous sequences in parallel. Perception and Psychophysics, 34, 331–337.

    Article  PubMed  Google Scholar 

  • Diedrichsen, J., Hazeltine, E., Nurss, W. K., & Ivry, R. B. (2003). The role of the corpus callosum in the coupling of bimanual isometric force pulses. Journal of Neurophysiology, 4, 2409–2418.

    Article  Google Scholar 

  • Franz, E. A., Eliassen, J. C., Ivry, R. B., & Gazzaniga, M. S. (1996). Dissociation of spatial and temporal coupling in the bimanual movements of callosotomy patients. Psychological Science, 7, 306–310.

    Article  Google Scholar 

  • Guiard, Y. (1987). Asymmetric division of labor in human skilled bimanual action: the kinematic chain as a model. Journal of Motor Behavior, 19, 486–517.

    Article  PubMed  Google Scholar 

  • Guiard, Y. (1993). On Fitts’s and Hooke’s laws: simple harmonic movement in upper-limb cyclical aiming. Acta Psychologica, 82, 139–159.

    Article  PubMed  Google Scholar 

  • Guiard, Y. (1997). Fitts’ law in the discrete vs cyclical paradigm. Human Movement Science, 16, 97–131.

    Article  Google Scholar 

  • Hessler, E. E., Gonzales, L. M., & Amazeen, P. G. (2010). Displays that facilitate performance of multifrequency ratios during motor-respiratory coordination. Acta Psychologica, 133, 96–105.

    Article  PubMed  Google Scholar 

  • Heuer, H., Kleinsorge, T., Spijkers, W., & Steglich, W. (2001). Static and pha-sic cross-talk effects in discrete bimanual reversal movements. Journal of Motor Behavior, 33, 67–85.

    Article  PubMed  Google Scholar 

  • Heuer, H., Spijkers, W., Steglich, C., & Kleinsorge, T. (2002). Parametric coupling and generalized decoupling revealed by concurrent and successive isometric contractions of distal muscles. Acta Psychologica, 111, 205–242.

    Article  PubMed  Google Scholar 

  • Hill, A. V. (1970). First and last experiments in muscle mechanics. Cambridge: Cambridge University Press.

    Google Scholar 

  • Houweling, S., Beek, P. J., & Daffertshofer, A. (2010). Spectral changes of interhemispheric crosstalk during movement instabilities. Cerebral Cortex, 20, 2605–2613.

    Article  PubMed  Google Scholar 

  • Hu, X., Loncharich, M., & Newell, K. M. (2011). Visual information interacts with neuromuscular factors in the coordination bimanual isometric force. Experimental Brain Research, 209, 129–138.

    Article  PubMed  Google Scholar 

  • Hu, X., & Newell, K. M. (2011a). Adaption to bimanual asymmetric weights in isometric force coordination. Neuroscience Letters, 490, 121–125.

    Article  PubMed  Google Scholar 

  • Hu, X., & Newell, K. M. (2011b). Visual information gain and task asymmetry interact in bimanual force coordination and control. Experimental Brain Research, 212, 497–504.

    Article  PubMed  Google Scholar 

  • Kagerer, F. A., Summers, J. J., & Semjen, A. (2003). Instabilities during antiphase bimanual movements: are ipsilateral pathways involved? Experimental Brain Research, 151, 489–500.

    Article  PubMed  Google Scholar 

  • Kasuga, S., & Nozaki, D. (2011). Cross talk in implicit assignment of error information during bimanual visuomotor learning. Journal of Neurophysiology, 106, 1218–1226.

    Article  PubMed  Google Scholar 

  • Kelso, J. A. S. (1995). Dynamic patterns: the self-organization of the brain and behavior. Cambridge: MIT Press.

    Google Scholar 

  • Kelso, J. A. S., Scholz, J. P., & Schoner, G. (1986). Nonequilibrium phase-transitions in coordinated biological motion; critical fluctuations. Physics Letters A, 118, 279–284.

    Article  Google Scholar 

  • Kennedy, D. M., Boyle, J. B., Rhee, J., & Shea, C. H. (2014). Rhythmical bimanual force production: homologous and non-homologous muscles. Experimental Brain Research. doi:10.1007/s00221-014-4102-y

  • Kennedy, D. M., Wang, C., & Shea, C. H. (2013). Reacting while moving: influence of right limb movement on left limb reaction. Experimental Brain Research, 230, 143–152.

    Article  PubMed  Google Scholar 

  • Kovacs, A. J., Buchanan, J. J., & Shea, C. H. (2009). Bimanual 1:1 with 90 degrees continuous relative phase: difficult or easy. Experimental Brain Research, 193, 129–136.

    Article  PubMed  Google Scholar 

  • Kovacs, A. J., Buchanan, J. J., & Shea, C. H. (2010a). Impossible is nothing: 5:3 and 4:3 multi-frequency bimanual coordination. Experimental Brain Research, 201, 249–259.

    Article  PubMed  Google Scholar 

  • Kovacs, A. J., Buchanan, J. J., & Shea, C. H. (2010b). Perceptual and attentional influences on continuous 2:1 and 3:2 multi-frequency bimanual coordination. Journal of Experimental Psychology: Human Perception and Performance, 36, 936–954.

    PubMed  Google Scholar 

  • Kovacs, A. J., & Shea, C. H. (2010). Amplitude differences, spatial assimilation, and integrated feedback in bimanual coordination. Experimental Brain Research, 202, 519–525.

    Article  PubMed  Google Scholar 

  • Kovacs, A. J., & Shea, C. H. (2011). The learning of 90 degrees continuous relative phase with and without Lissajous feedback: external and internally generated bimanual coordination. Acta Psychologica, 136, 311–320.

    Article  PubMed  Google Scholar 

  • Krishnan, V., & Jaric, S. (2010). Effects of task complexity on coordination of inter-limb and within-limb forces in static bimanual manipulation. Motor Control, 230, 528–544.

    Google Scholar 

  • Latash, M. L. (2010). Motor synergies and the equilibrium-point hypothesis. Motor Control, 14, 294–322.

    PubMed  PubMed Central  Google Scholar 

  • Latash, M. L. (2012). The bliss (not the problem) of motor abundance (not redundancy). Experimental Brain Research, 217, 1–5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Levin, O., Suy, E., Huybrechts, J., Vangheluwe, S., & Swinnen, S. P. (2004). Bimanual coordination involving homologous and heterologous joint combinations: when lower stability is associated with higher flexibility. Behavioral Brain Research, 152, 437–445.

    Article  Google Scholar 

  • Maki, Y., Wong, K. F. K., Sugiura, M., Ozaki, T., & Sadato, N. (2008). Asymmetric control mechanisms of bimanual coordination: an application of directed connectivity analysis to kinematic and functional MRI data. Neuroimage, 42, 1295–1304.

    Article  PubMed  Google Scholar 

  • Marteniuk, R. G., MacKenzie, C. L., & Baba, D. M. (1984). Bimanual movement control: information processing and interaction effects. Quarterly Journal of Experimental Psychology, 37, 335–365.

    Article  Google Scholar 

  • Monno, A., Chardenon, A., Temprado, J. J., Zanone, P. G., & Laurent, M. (2000). Effects of attention on phase transitions between bimanual coordination patterns: a behavioral and cost analysis in humans. Neuroscience Letters, 283, 93–96.

    Article  PubMed  Google Scholar 

  • Murian, A., Deschamps, T., & Temprado, J. J. (2008). Effects of force production and trial duration on bimanual performance and attentional demands in a rhythmic coordination task. Motor Control, 12, 21–37.

    PubMed  Google Scholar 

  • Park, S., Dijkstra, T. M. H., & Sternad, D. (2013). Learning to never forget—time scales and specificity of long-term memory of a motor skill. Frontiers in Computational Neuroscience, 7, 1–13.

    Article  Google Scholar 

  • Peper, C. E., Beek, P. J., & van Wieringen, P. C. W. (1995a). Coupling strength in tapping a 2/3 polyrhythm. Human Movement Science, 14, 217–245.

    Article  Google Scholar 

  • Peper, C. E., Beek, P. J., & van Wieringen, P. C. W. (1995b). Frequency-induced phase-transitions in bimanual tapping. Biological Cybernetics, 73, 301–309.

    Article  PubMed  Google Scholar 

  • Peper, C. E., Beek, P. J., & Vanwieringen, P. C. W. (1995c). Multifrequency coordination in bimanual tapping—asymmetrical coupling and signs of supercriticality. Journal of Experimental Psychology-Human Perception and Performance, 21, 1117–1138.

    Article  Google Scholar 

  • Puttemans, V., Wenderoth, N., & Swinnen, S. P. (2005). Changes in brain activation during the acquisition of a multifrequency bimanual coordination task: from the cognitive stage to advanced levels of automaticity. The Journal of Neuroscience, 25, 4270–4278.

    Article  PubMed  Google Scholar 

  • Ridderikhoff, A., Peper, C. L., & Beek, P. J. (2005). Unraveling interlimb interactions underlying bimanual coordination. Journal Neurophysiology, 94, 3112–3125.

    Article  PubMed  Google Scholar 

  • Riek, S., Carson, R. G., & Byblow, W. D. (1992). Spatial and muscular dependencies in bimanual coordination. Journal of Human Movement Studies, 23, 251–265.

    Google Scholar 

  • Sainburg, R. L. (2010). Lateralization of goal-directed movement. Vision and goal-directed movement (pp. 219–288). Champaign: Human Kinetics.

    Google Scholar 

  • Scholz, J. P., & Kelso, J. A. S. (1989). A quantitative approach to understanding the formation and change of coordinated movement patterns. Journal of Motor Behavior, 21, 122–144.

    Article  PubMed  Google Scholar 

  • Semjen, A., & Summers, J. J. (2002). Timing goals in bimanual coordination. Quarterly Journal of Experimental Psychology A, Human Experimental Psychology, 55, 155–171.

    Article  Google Scholar 

  • Semjen, A., Summers, J. J., & Cattaert, D. (1995). Hand coordination in bimanual circle drawing. Journal of Experimental Psychology-Human Perception and Performance, 21, 1139–1157.

    Article  Google Scholar 

  • Serrien, D. (2009). Interactions between new and pre-existing dynamics in bimanual movement control. Experimental Brain Research, 197, 269–278.

    Article  PubMed  PubMed Central  Google Scholar 

  • Serrien, D., & Swinnen, S. P. (1997). Coordination constraints induced by effector combination under isofrequency and multifrequency conditions. Journal of Experimental Psychology-Human Perception and Performance, 23, 1493–1510.

    Article  Google Scholar 

  • Shapkova, E. Y., Shapkova, A. L., Goodman, S. R., Zatsiorsky, V. M., & Latash, M. L. (2008). Do synergies decrease force variability? A study of single-finger and multi-finger force production. Experimental Brain Research, 188, 411–425.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sherwood, D. E. (1994). Hand preference, practice order, and spatial assimilations in rapid bimanual movements. Journal of Motor Behavior, 26, 123–134.

    Article  PubMed  Google Scholar 

  • Sisti, H. M., Geurts, M., Clerckx, R., Gooijers, J., Coxon, J. P., Heitger, M. H., & Swinnen, S. P. (2011). Testing multiple coordination constraints with a novel bimanual visuomotor task. PLoS ONE, 6, e23619.

    Article  PubMed  PubMed Central  Google Scholar 

  • Spijkers, W., & Heuer, H. (1995). Structural constraints on the performance of symmetrical bimanual movements with different amplitudes. Quarterly Journal of Experimental Psychology Section a-Human Experimental Psychology, 48, 716–740.

    Article  Google Scholar 

  • Steglich, C., Heuer, H., Spijkers, W., & Kleinsorge, T. (1999). Bimanual coupling during the specification of isometric forces. Experimental Brain Research, 129, 302–316.

    Article  PubMed  Google Scholar 

  • Sternad, D., Turvey, M. T., & Saltzman, E. L. (1999a). Dynamics of 1:2 coordination: temporal scaling, latent 1:1, and bistability. Journal of Motor Behavior, 31, 236–247.

    Article  PubMed  Google Scholar 

  • Sternad, D., Turvey, M. T., & Saltzman, E. L. (1999b). Dynamics of 1:2 coordination: sources of symmetry breaking. Journal of Motor Behavior, 31, 224–235.

    Article  PubMed  Google Scholar 

  • Sternad, D., Turvey, M. T., & Saltzman, E. L. (1999c). Dynamics of 1:2 coordination: generalizing relative phase to n:m rhythms. Journal of Motor Behavior, 31, 207–223.

    Article  PubMed  Google Scholar 

  • Stone, K. D., Bryant, D. C., & Gonzalez, C. L. R. (2013). Hand use for grasping in a bimanual task: evidence for different roles? Experimental Brain Research, 224, 455–467.

    Article  PubMed  Google Scholar 

  • Summers, J. J., Davis, A. S., & Byblow, W. D. (2002). The acquisition of bimanual coordination is mediated by anisotropic coupling between the hands. Human Movement Science, 21, 699–721.

    Article  PubMed  Google Scholar 

  • Summers, J. J., Maeder, S., Hiraga, C. Y., & Alexander, J. R. (2008). Coordination dynamics and attentional costs of continuous and discontinuous bimanual circle drawing movements. Human Movement Science, 27, 823–837.

    Article  PubMed  Google Scholar 

  • Summers, J. J., Todd, J. A., & Kim, Y. H. (1993). The influence of perceptual and motor factors on bimanual coordination in a polyrhythmic tapping task. Psychological Research, 55, 107–115.

    Article  PubMed  Google Scholar 

  • Swinnen, S. P. (2002). Intermanual coordination: from behavioural principles to neural-network interactions. Nature Review: Neuroscience, 3, 348–359.

    Article  PubMed  Google Scholar 

  • Swinnen, S. P., Dounskaia, N., & Duysens, J. (2002). Patterns of bimanual interference reveal movement encoding within a radial egocentric reference frame. Journal of Cognitive Neuroscience, 14, 463–471.

    Article  PubMed  Google Scholar 

  • Swinnen, S. P., Dounskaia, N., Levin, O., & Duysens, J. (2001). Constraints during bimanual coordination: the role of direction in relation to amplitude and force requirements. Behavioral Brain Research, 123, 201–218.

    Article  Google Scholar 

  • Swinnen, S. P., Dounskaia, N., Walter, C. B., & Serrien, D. J. (1997). Preferred and induced coordination modes during the acquisition of bimanual movements with a 2:1 frequency ratio. Journal of Experimental Psychology: Human Perception and Performance, 23, 1087–1110.

    Google Scholar 

  • Swinnen, S. P., & Wenderoth, N. (2004). Two hands, one brain: cognitive neuroscience of bimanual skill. Trends in Cognitive Sciences, 8, 18–25.

    Article  PubMed  Google Scholar 

  • Temprado, J. J., Chardenon, A., & Laurent, M. (2001). Interplay of biomechanical and neuromuscular constraints on pattern stability and attentional demands in a bimanual coordination task in human subjects. Neuroscience Letters, 303, 127–131.

    Article  PubMed  Google Scholar 

  • Temprado, J. J., Zanone, P. G., Monno, A., & Laurent, M. (1999). Attentional load associated with performing and stabilizing preferred bimanual patterns. Journal of Experimental Psychology: Human Perception and Performance, 25, 1579–1594.

    Google Scholar 

  • Therrien, A. S., Lyons, J., & Balasubramaniam, R. (2013). Continuous theta-burst stimulation to primary motor cortex reveals asymmetric compensation for sensory attenuation in bimanual repetitive force production. Journal of Neurophysiology, 110, 872–882.

    Article  PubMed  Google Scholar 

  • Treffner, P. J., & Turvey, M. T. (1993). Resonance constraints on rhythmic movement. Journal of Experimental Psychology: Human Perception and Performance, 19, 1221–1237.

    Google Scholar 

  • Uttner, I., Kraft, E., Nowak, D. A., Muller, F., Philipp, J., Zierdt, A., & Hermsdorfer, J. (2007). Mirror movements and the role of handedness: isometric grip forces changes. Motor Control, 11, 16–28.

    PubMed  Google Scholar 

  • Zanone, P. G., & Kelso, J. A. S. (1992). The evolution of behavioral attractors with learning: nonequilibrium phase transitions. Journal of Experimental Psychology: Human Perception and Performance, 18, 403–421.

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by student research grants from the Huffines Institute and College of Education and Human Development, Texas A&M University to D. M. Kennedy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles H. Shea.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kennedy, D.M., Boyle, J.B., Wang, C. et al. Bimanual force control: cooperation and interference?. Psychological Research 80, 34–54 (2016). https://doi.org/10.1007/s00426-014-0637-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-014-0637-6

Keywords

Navigation