Skip to main content
Log in

Individual differences in fluid intelligence predicts inattentional blindness in a sample of older adults: a preliminary study

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

Previous research has shown that aging increases susceptibility to inattentional blindness (Graham and Burke, Psychol Aging 26:162, 2011) as well as individual differences in cognitive ability related to working memory and executive functions in separate studies. Therefore, the present study was conducted in an attempt to bridge a gap that involved investigating ‘age-sensitive’ cognitive abilities that may predict inattentional blindness in a sample of older adults. We investigated whether individual differences in general fluid intelligence and speed of processing would predict inattentional blindness in our sample of older adults. Thirty-six healthy older adults took part in the study. Using the inattentional blindness paradigm developed by Most et al. (Psychol Rev 112:217, 2005), we investigated whether rates of inattentional blindness could be predicted by participant’s performance on the Raven's Advanced Progressive Matrices and a choice-reaction time task. A Mann–Whitney U test revealed that a higher score on the Raven's Advanced Progressive Matrices was significantly associated with lower incidences of inattentional blindness. However, a t test revealed that choice-reaction times were not significantly associated with inattentional blindness. Preliminary results from the present study suggest that individual differences in general fluid intelligence are predictive of inattentional blindness in older adults but not speed of processing. Moreover, our findings are consistent with previous studies that have suggested executive attention control may be the source of these individual differences. These findings also highlight the association between attention and general fluid intelligence and how it may impact environmental awareness. Future research would benefit from repeating these analyses in a larger sample and also including a younger comparison group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Ackerman, P. L., Beier, M. E., & Boyle, M. D. (2002). Individual differences in working memory within a nomological network of cognitive and perceptual speed abilities. Journal of Experimental Psychology: General, 131(4), 567.

    Article  Google Scholar 

  • Ackerman, P. L., Beier, M. E., & Boyle, M. O. (2005). Working memory and intelligence: the same or different constructs? Psychological Bulletin, 131(1), 30.

    Article  PubMed  Google Scholar 

  • Baddeley, A. (2000). The episodic buffer: a new component of working memory? Trends in Cognitive Science (Regular Edition), 4(11), 417–423.

    Article  Google Scholar 

  • Birren, J. E., & Fisher, L. M. (1995). Aging and speed of behavior: possible consequences for psychological functioning. Annual Review of Psychology, 46(1), 329–353.

    Article  PubMed  Google Scholar 

  • Bredemeier, K., & Simons, D. J. (2012). Working memory and inattentional blindness. Psychonomic Bulletin & Review, 19(2), 239–244.

    Article  Google Scholar 

  • Bugg, J. M., Zook, N. A., DeLosh, E. L., Davalos, D. B., & Davis, H. P. (2006). Age differences in fluid intelligence: contributions of general slowing and frontal decline. Brain and Cognition, 62(1), 9–16.

    Article  PubMed  Google Scholar 

  • Cattell, R. B. (1963). Theory of fluid and crystallized intelligence: a critical experiment. Journal of Educational Psychology, 54(1), 1.

    Article  Google Scholar 

  • Cepeda, N. J., Kramer, A. F., & de Gonzalez Sather, J. (2001). Changes in executive control across the life span: examination of task-switching performance. Developmental Psychology, 37(5), 715.

    Article  PubMed  Google Scholar 

  • Conway, A. R., Cowan, N., Bunting, M. F., Therriault, D. J., & Minkoff, S. R. (2002). A latent variable analysis of working memory capacity, short-term memory capacity, processing speed, and general fluid intelligence. Intelligence, 30(2), 163–183.

    Article  Google Scholar 

  • Deary, I. J., & Der, G. (2005). Reaction time, age, and cognitive ability: longitudinal findings from age 16 to 63 years in representative population samples. Aging, Neuropsychology, and Cognition, 12(2), 187–215.

    Article  Google Scholar 

  • Deary, I. J., Liewald, D., & Nissan, J. (2011). A free, easy-to-use, computer-based simple and four-choice reaction time programme: the Deary–Liewald reaction time task. Behavior Research Methods, 43(1), 258–268.

    Article  PubMed  Google Scholar 

  • Der, G., & Deary, I. J. (2006). Age and sex differences in reaction time in adulthood: results from the United Kingdom Health and Lifestyle Survey. Psychology and Aging, 21(1), 62.

    Article  PubMed  Google Scholar 

  • Duncan, J. (2006). Brain mechanisms of attention. Quarterly Journal of Experimental Psychology, 59, 2–27.

    Article  Google Scholar 

  • Duncan, J., Burgess, P., & Emslie, H. (1995). Fluid intelligence after frontal lobe lesions. Neuropsychologia, 33, 261–268.

    Article  PubMed  Google Scholar 

  • Duncan, J., & Owen, A. M. (2000). Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends in Neurosciences, 23, 475–483.

    Article  PubMed  Google Scholar 

  • Embretson, S. E. (1995). The role of working memory capacity and general control processes in intelligence. Intelligence, 20(2), 169–189.

    Article  Google Scholar 

  • Engle, R. W., Kane, M., & Tuholski, S. W. (1999). Individual differences in working memory capacity and what they tell us about controlled attention, general fluid intelligence, and functions of the prefrontal cortex. Models of working memory: mechanisms of active maintenance and executive control (pp. 102–134). New York: Cambridge University press.

    Google Scholar 

  • Fougnie, D., & Marois, R. (2007). Executive working memory load induces inattentional blindness. Psychonomic Bulletin & Review, 14(1), 142–147.

    Article  Google Scholar 

  • Graham, E. R., & Burke, D. M. (2011). Aging increases inattentional blindness to the gorilla in our midst. Psychology and Aging, 26(1), 162.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hambrick, D. Z. (2003). Why are some people more knowledgeable than others? A longitudinal study of knowledge acquisition. Memory &Cognition, 31(6), 902–917.

    Article  Google Scholar 

  • Hamel, R., & Schmittmann, V. D. (2006). The 20-minute version as a predictor of the Raven Advanced Progressive Matrices Test. Educational and Psychological Measurement, 66(6), 1039–1046.

    Article  Google Scholar 

  • Hannon, E. M., & Richards, A. (2010). Is inattentional blindness related to individual differences in visual working memory capacity or executive control functioning? Perception, 39(3), 309–319.

    Article  PubMed  Google Scholar 

  • Hartley, A. A., Kieley, J., & Mckenzie, C. R. (1992). Allocation of visual attention in younger and older adults. Perception and Psychophysics, 52(2), 175–185.

    Article  PubMed  Google Scholar 

  • Heitz, R. P., Unsworth, N., & Engle, R. W. (2005). Working memory capacity, attention control, and fluid intelligence. In O. Wilhelm & R. W. Engle (Eds.), Handbook of understanding and measuring intelligence (pp. 61–77). New York: Sage.

    Chapter  Google Scholar 

  • Horn, J. L., & Cattell, R. B. (1967). Age differences in fluid and crystallized intelligence. Acta Psychologica, 26, 107–129.

    Article  PubMed  Google Scholar 

  • Hultsch, D. F., MacDonald, S. W., & Dixon, R. A. (2002). Variability in reaction time performance of younger and older adults. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 57(2), P101–P115.

    Article  Google Scholar 

  • Jensen, A. R. (2006). Clocking the mind: Mental chronometry and individual differences. Elsevier.

  • Kahneman, D. (1973). Attention and effort. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Kane, M. J., & Engle, R. W. (2002). The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: an individual-differences perspective. Psychonomic Bulletin & Review, 9(4), 637–671.

    Article  Google Scholar 

  • Kane, M. J., Hambrick, D. Z., & Conway, A. R. (2005). Working memory capacity and fluid intelligence are strongly related constructs: comment on Ackerman, Beier, and Boyle. Psychol Bull, 131(1), 66–71.

    Article  PubMed  Google Scholar 

  • Kyllonen, P. C., & Christal, R. E. (1990). Reasoning ability is (little more than) working-memory capacity?! Intelligence, 14(4), 389–433.

    Article  Google Scholar 

  • Lavie, N. (2006). The role of perceptual load in visual awareness. Brain Research, 1080(1), 91–100.

    Article  PubMed  Google Scholar 

  • Li, S. C., Lindenberger, U., Hommel, B., Aschersleben, G., Prinz, W., & Baltes, P. B. (2004). Transformations in the couplings among intellectual abilities and constituent cognitive processes across the life span. Psychological Science, 15(3), 155–163.

    Article  PubMed  Google Scholar 

  • Lindenberger, U., Marsiske, M., & Baltes, P. B. (2000). Memorizing while walking: increase in dual-task costs from young adulthood to old age. Psychology and Aging, 15(3), 417.

    Article  PubMed  Google Scholar 

  • MacDonald, A. W., Cohen, J. D., Stenger, V. A., & Carter, C. S. (2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science, 288(5472), 1835–1838.

    Article  PubMed  Google Scholar 

  • Macdonald, J. S., & Lavie, N. (2011). Visual perceptual load induces inattentional deafness. Attention, Perception, & Psychophysics, 73(6), 1780–1789.

    Article  Google Scholar 

  • Madden, D. J. (2001). Speed and timing of behavioral processes. Handbook of the psychology of aging, Vol 5, pp. 288–312.

  • McKnight, P. E., & Najab, J. (2010). Mann‐Whitney U Test. Corsini Encyclopedia of Psychology, Vol 1

  • Memmert, D. (2006). The effects of eye movements, age, and expertise on inattentional blindness. Consciousness and Cognition, 15(3), 620–627.

    Article  PubMed  Google Scholar 

  • Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: a latent variable analysis. Cognitive Psychology, 41, 49–100.

    Article  PubMed  Google Scholar 

  • Morse, C. K. (1993). Does variability increase with age? An archival study of cognitive measures. Psychology and Aging, 8(2), 156.

    Article  PubMed  Google Scholar 

  • Most, S. B., Simons, D. J., Scholl, B. J., Jimenez, R., Clifford, E., & Chabris, C. F. (2001). How not to be seen: the contribution of similarity and selective ignoring to sustained inattentional blindness. Psychological Science, 12(1), 9–17.

    Article  PubMed  Google Scholar 

  • Most, S. B., Scholl, B. J., Clifford, E. R., & Simons, D. J. (2005). What you see is what you set: sustained inattentional blindness and the capture of awareness. Psychological Review, 112(1), 217.

    Article  PubMed  Google Scholar 

  • Neisser, U., & Becklen, R. (1975). Selective looking: attending to visually specified events. Cognitive Psychology, 7(4), 480–494.

    Article  Google Scholar 

  • Nordstokke, D. W., & Zumbo, B. D. (2010). A new nonparametric Levene test for equal variances. Psicologica, 31, 401–430.

    Google Scholar 

  • Pardo, J. V., Pardo, P. J., Janer, K. W., & Raichle, M. E. (1990). The anterior cingulate cortex mediates processing selection in the Stroop attentional conflict paradigm. Proceedings of the National Academy of Sciences, 87(1), 256–259.

    Article  Google Scholar 

  • Pizzighello, S., & Bressan, P. (2008). Auditory attention causes visual inattentional blindness. Perception, 37(6), 859.

    Article  PubMed  Google Scholar 

  • Raven, J., & Court, J. H. (1998). Manual for Raven’s progressive matrices and vocabulary scales., Section 4: the advanced progressive matrices Oxford: Oxford Psychologists press.

    Google Scholar 

  • Richards, A., Hannon, E. M., & Derakshan, N. (2010). Predicting and manipulating the incidence of inattentional blindness. Psychological Research, 74(6), 513–523.

    Article  PubMed  Google Scholar 

  • Salthouse, T. A. (1996). The processing-speed theory of adult age differences in cognition. Psychological Review, 103(3), 403.

    Article  PubMed  Google Scholar 

  • Seegmiller, J. K., Watson, J. M., & Strayer, D. L. (2011). Individual differences in susceptibility to inattentional blindness. Journal of Experimental Psychology; Learning, Memory, and Cognition, 37(3), 785–791.

    Article  PubMed  Google Scholar 

  • Shammi, P., Bosman, E., & Stuss, D. T. (1998). Aging and variability in performance. Aging.

  • Shapiro, S. S., & Wilk, M. B. (1964). An analysis of variance test for normality (complete samples) (Doctoral dissertation, Rutgers, The State University). Neuropsychology and Cognition, 5(1), 1–13.

    Google Scholar 

  • Simons, D. J., & Chabris, C. F. (1999). Gorillas in our midst: sustained inattentional blindness for dynamic events. Perception-London, 28(9), 1059–1074.

    Article  PubMed  Google Scholar 

  • Stuss, D. T., & Knight, R. T. (Eds.). (2013). Principles of frontal lobe function. NY: Oxford University Press.

  • Süß, H. M., Oberauer, K., Wittmann, W. W., Wilhelm, O., & Schulze, R. (2002). Working-memory capacity explains reasoning ability—and a little bit more. Intelligence, 30(3), 261–288.

    Article  Google Scholar 

  • Thakral, P. P. (2011). The neural substrates associated with inattentional blindness. Consciousness and Cognition, 20(4), 1768–1775.

    Article  PubMed  Google Scholar 

  • Unsworth, N., & Engle, R. W. (2005). Working memory capacity and fluid abilities: Examining the correlation between Operation Span and Raven. Intelligence, 33(1), 67–81.  

    Article  Google Scholar 

  • West, R. L. (1996). An application of prefrontal cortex function theory to cognitive aging. Psychological Bulletin, 120(2), 272.

    Article  PubMed  Google Scholar 

  • West, R., Murphy, K. J., Armilio, M. L., Craik, F. I., & Stuss, D. T. (2002). Lapses of intention and performance variability reveal age-related increases in fluctuations of executive control. Brain and Cognition, 49(3), 402–419.

    Article  PubMed  Google Scholar 

  • Wilckens, K. A., Erickson, K. I., & Wheeler, M. E. (2012). Age-related decline in controlled retrieval: the role of the PFC and sleep. Neural plasticity, 2012.

  • Yeung, N., Botvinick, M. M., & Cohen, J. D. (2004). The neural basis of error detection: conflict monitoring and the error-related negativity. Psychological Review, 111(4), 931–959.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Deirdre M. O’Shea or Robert A. Fieo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Shea, D.M., Fieo, R.A. Individual differences in fluid intelligence predicts inattentional blindness in a sample of older adults: a preliminary study. Psychological Research 79, 570–578 (2015). https://doi.org/10.1007/s00426-014-0594-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-014-0594-0

Keywords

Navigation