Skip to main content
Log in

Optimal training design for procedural motor skills: a review and application to laparoscopic surgery

  • Review
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

This literature review covers the choices to consider in training complex procedural, perceptual and motor skills. In particular, we focus on laparoscopic surgery. An overview is provided of important training factors modulating the acquisition, durability, transfer, and efficiency of trained skills. We summarize empirical studies and their theoretical background on the topic of training complex cognitive and motor skills that are pertinent to proficiency in laparoscopic surgery. The overview pertains to surgical simulation training for laparoscopy, but also to training in other demanding procedural and dexterous tasks, such as aviation, managing complex systems and sports. Evidence-based recommendations are provided for facilitating efficiency in laparoscopic motor skill training such as session spacing, adaptive training, task variability, part-task training, mental imagery and deliberate practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aggarwal, R., & Darzi, A. (2006). Technical-skills training in the 21st century. New England Journal of Medicine, 355(25), 2695–2696.

    Article  PubMed  Google Scholar 

  • Aggarwal, R., Moorthy, K., & Darzi, A. (2004). Laparoscopic skills training and assessment. British Journal of Surgery, 91(12), 1549–1558.

    Article  PubMed  Google Scholar 

  • Arora, S., Aggarwal, R., Sirimanna, P., Moran, A., Grantcharov, T., Kneebone, R., et al. (2011). Mental practice enhances surgical technical skills: A randomized controlled study. Annals of Surgery, 253(2), 265–270.

    Article  PubMed  Google Scholar 

  • ASGE training committee (2012). Small-bowel endoscopy core curriculum. Gastrointestinal endoscopy. doi:10.1016/j.gie.2012.09.023.

  • Avgerinos, D. V., Goodell, K. H., Waxberg, S., Cao, C. G. L., & Schwaitzberg, S. D. (2005). Comparison of the sensitivity of physical and virtual laparoscopic surgical training simulators to the user’s level of experience. Surgical Endoscopy and Other Interventional Techniques, 19(9), 1211–1215.

    Article  PubMed  Google Scholar 

  • Bashankaev, B., Baido, S., & Wexner, S. D. (2011). Review of available methods of simulation training to facilitate surgical education. Surgical Endoscopy, 25(1), 28–35.

    Article  PubMed  Google Scholar 

  • Bjork, R. A. (1999). Assessing our own competence: Heuristics and illusions. In D. Gopher & A. Koriat (Eds.), Attention and performance XVII: Cognitive regulation of performance: Interaction of theory and application (pp. 435–459). Cambridge: MIT Press.

    Google Scholar 

  • Bourne, L. E, Jr, & Healy, A. F. (2012). Introduction: Training and its cognitive underpinnings. In A. F. Healy & L. E. Bourne Jr (Eds.), Training cognition: Optimizing efficiency, durability, and generalizability (pp. 1–12). New York: Psychology Press.

    Google Scholar 

  • Boutin, A., & Blandin, Y. (2010). On the cognitive processes underlying contextual interference: Contributions of practice schedule, task similarity and amount of practice. Human Movement Science, 29(6), 910–920.

    Article  PubMed  Google Scholar 

  • Bramson, R., Sanders, C. W., Sadoski, M., West, C., Wiprud, R., English, M., et al. (2011). Comparing the effects of mental imagery rehearsal and physical practice on learning lumbar puncture by medical students. Annals of Behavioral Science and Medical Education, 17(2), 3–6.

    Google Scholar 

  • Brashers-Krug, T., Shadmehr, R., & Bizzi, E. (1996). Consolidation in human motor memory. Nature, 382(6588), 252–255.

    Article  PubMed  Google Scholar 

  • Brouziyne, M., & Molinaro, C. (2005). Mental imagery combined with physical practice of approach shots for golf beginners. Perceptual and Motor Skills, 101(1), 203–211.

    Article  PubMed  Google Scholar 

  • Carswell, C. M., Clarke, D., & Seales, W. B. (2005). Assessing mental workload during laparoscopic surgery. Surgical Innovation, 12(1), 80–90.

    Article  PubMed  Google Scholar 

  • Chmarra, M. K., Bakker, N. H., Grimbergen, C. A., & Dankelman, J. (2006). TrEndo, a device for tracking minimally invasive surgical instruments in training setups. Sensors and Actuators, A: Physical, 126(2), 328–334.

    Article  Google Scholar 

  • Chmarra, M. K., Dankelman, J., van den Dobbelsteen, J. J., & Jansen, F. W. (2008). Force feedback and basic laparoscopic skills. Surgical Endoscopy, 22(10), 2140–2148.

    Article  PubMed  Google Scholar 

  • Coyle, D. (2009). The Talent Code: Greatness isn’t born, it’s grown. Here’s how. New York: Bantam Dell, a division of Random House, Inc.

  • Crochet, P., Aggarwal, R., Dubb, S. S., Ziprin, P., Rajaretnam, N., Grantcharov, T., et al. (2011). Deliberate practice on a virtual reality laparoscopic simulator enhances the quality of surgical technical skills. Annals of Surgery, 253(6), 1216–1222.

    Article  PubMed  Google Scholar 

  • Cumming, J. L., & Hall, C. (2002). Deliberate imagery practice: the development of imagery skills in competitive athletes. Journal of Sports Sciences, 20(2), 137–145.

    Article  PubMed  Google Scholar 

  • Cumming, J. L., & Ste-Marie, D. M. (2001). The cognitive and motivational effects of imagery training: A matter of perspective. The Sport Psychologist, 15, 276–288.

    Google Scholar 

  • Datta, V., Chang, A., Mackay, S., & Darzi, A. (2002). The relationship between motion analysis and surgical technical assessments. The American journal of surgery, 184(1), 70–73.

    Article  Google Scholar 

  • Donovan, J. J., & Radosevich, D. J. (1999). A meta-analytic review of the distribution of practice effect: Now you see it, now you don’t. Journal of Applied Psychology, 84, 795–805.

    Article  Google Scholar 

  • Dreyfus, H. L., Dreyfus, S. E., & Athanasioum, T. (1986). Mind over Machine. New York: Free Press.

    Google Scholar 

  • Duffy, A. J., Hogle, N. J., McCarthy, H., Lew, J. I., Egan, A., Christos, P., et al. (2005). Construct validity for the LAPSIM laparoscopic surgical simulator. Surgical Endoscopy and Other Interventional Techniques, 19(3), 401–405.

    Article  PubMed  Google Scholar 

  • Dunlosky, J., Rawson, K. A., Marsh, E. J., Nathan, M. J., & Willingham, D. T. (2013). Improving students’ learning with effective learning techniques promising directions from cognitive and educational psychology. Psychological Science in the Public Interest, 14(1), 4–58.

    Article  Google Scholar 

  • Ericsson, K. A. (2006). The influence of experience and deliberate practice on the development of superior expert performance. In K. A. Ericsson (Ed.), The Cambridge handbook of expertise and expert performance (pp. 685–705). London: Cambridge University Press.

  • Ericsson, K. A., Krampe, R Th, & Tesch-Römer, C. (1993). The role of deliberate practice in the acquisition of expert performance. Psychological Review, 100, 363–406.

    Article  Google Scholar 

  • Fadde, P. J. (2010). Training complex psychomotor performance skills: A part-task approach. In K. H. Silber & R. Foshay (Eds.), Handbook of training and improving workplace performance Volume 1: Instructional design and training delivery. Wiley, New York: For The International Society for Performance Improvement.

    Google Scholar 

  • Gallagher, A. G., Jordan-Black, J. A., & O’Sullivan, G. C. (2012). Prospective, randomized assessment of the acquisition, maintenance, and loss of laparoscopic skills. Annals of Surgery, 256(2), 387–393.

    Article  PubMed  Google Scholar 

  • Gallagher, A. G., McClure, N., McGuigan, J., Ritchie, K., & Sheehy, N. P. (2008). An ergonomic analysis of the fulcrum effect in the acquisition of endoscopic skills. Endoscopy, 30(07), 617–620.

    Article  Google Scholar 

  • Gallagher, A. G., & O’Sullivan, G. C. (2012). Fundamentals of surgical simulation. London: Springer.

    Book  Google Scholar 

  • Gallagher, A. G., Ritter, E. M., Champion, H., Higgins, G., Fried, M. P., Moses, G., et al. (2005). Virtual reality simulation for the operating room: proficiency-based training as a paradigm shift in surgical skills training. Annals of Surgery, 241(2), 364.

    Article  PubMed  PubMed Central  Google Scholar 

  • Goodell, K. H., Cao, C. G., & Schwaitzberg, S. D. (2006). Effects of cognitive distraction on performance of laparoscopic surgical tasks. Journal of Laparoendoscopic & Advanced Surgical Techniques, 16(2), 94–98.

    Article  Google Scholar 

  • Gopher, D., Weil, M., & Siegel, D. (1989). Practice under changing priorities: An approach to the training of complex skills. Acta Psychologica, 71(1), 147–177.

    Article  Google Scholar 

  • Guadagnoli, M. A., & Lee, T. D. (2004). Challenge point: A framework for conceptualizing the effects of various practice conditions in motor learning. Journal of Motor Behavior, 36(2), 212–224.

    Article  PubMed  Google Scholar 

  • Hall, C. R., Mack, D. E., Paivio, A., & Hausenblas, H. A. (1998). Imagery use by athletes: Development of the sport imagery questionnaire. International Journal of Sport Psychology, 29, 73–89.

    Google Scholar 

  • Hallgató, E., Győri-Dani, D., Pekár, J., Janacsek, K., & Nemeth, D. (2012). The differential consolidation of perceptual and motor learning in skill acquisition. Cortex,. doi:10.1016/j.cortex.2012.01.002.

    PubMed  Google Scholar 

  • Hiemstra, E., Kolkman, W., & Jansen, F. W. (2008). Skills training in minimally invasive surgery in Dutch obstetrics and gynecology residency curriculum. Gynecological Surgery, 5(4), 321–325.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hsu, K. E., Man, F. Y., Gizicki, R. A., Feldman, L. S., & Fried, G. M. (2008). Experienced surgeons can do more than one thing at a time: Effect of distraction on performance of a simple laparoscopic and cognitive task by experienced and novice surgeons. Surgical Endoscopy, 22(1), 196–201.

    Article  PubMed  Google Scholar 

  • Immenroth, M., Bürger, T., Brenner, J., Nagelschmidt, M., Eberspächer, H., & Troidl, H. (2007). Mental training in surgical education: A randomized controlled trial. Annals of Surgery, 245(3), 385.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jordan, J. A., Gallagher, A. G., McGuigan, J., McGlade, K., & McClure, N. (2000). A comparison between randomly alternating imaging, normal laparoscopic imaging, and virtual reality training in laparoscopic psychomotor skill acquisition. The American Journal of Surgery, 180(3), 208–211.

    Article  Google Scholar 

  • Kahol, K., Leyba, M. J., Deka, M., Deka, V., Mayes, S., Smith, M., et al. (2008). Effect of fatigue on psychomotor and cognitive skills. The American Journal of Surgery, 195(2), 195–204.

    Article  Google Scholar 

  • Kolkman, W., Van de Put, M. A. J., Wolterbeek, R., Trimbos, J. B. M. Z., & Jansen, F. W. (2008). Laparoscopic skills simulator: Construct validity and establishment of performance standards for residency training. Gynecological Surgery, 5(2), 109–114.

    Article  Google Scholar 

  • Korman, M., Doyon, J., Doljansky, J., Carrier, J., Dagan, Y., & Karni, A. (2007). Daytime sleep condenses the time course of motor memory consolidation. Nature Neuroscience, 10(9), 1206–1213.

    Article  PubMed  Google Scholar 

  • Locke, E.A., & Latham, G.P. (2002). Building a practically useful theory of goal setting and task motivation on November 9th, 2011. In business models, business theories. American Psychologist, 57(9), 705–717.

    Google Scholar 

  • Loehr, J.E., & Schwartz, T. (2003). The power of full engagement: managing energy, not time, is the key to high performance and personal renewal. New York: Simon & Schuster, Inc.

  • Logan, G. D. (1988). Toward an instance theory of automatization. Psychological Review, 95(4), 492–527.

    Article  Google Scholar 

  • Luursema, J. M., Buzink, S. N., Verwey, W. B., & Jakimowicz, J. J. (2010). Visuo-spatial ability in colonoscopy simulator training. Advances in Health Sciences Education, 15(5), 685–694.

    Article  PubMed  PubMed Central  Google Scholar 

  • Luursema, J. M., Verwey, W. B., & Burie, R. (2012). Visuospatial ability factors and performance variables in laparoscopic simulator training. Learning and Individual Differences, 22(5), 632–638.

    Article  Google Scholar 

  • Lynagh, M., Burton, R., & Sanson-Fisher, R. (2007). A systematic review of medical skills laboratory training: Where to from here? Medical Education, 41(9), 879–887.

    Article  PubMed  Google Scholar 

  • Macedonia, M. (2002). Games, simulation, and the military education dilemma. In Internet and the University: 2001 Forum (pp. 157–167).

  • Magill, R. A., & Hall, K. G. (1990). A review of the contextual interference effect in motor skill acquisition. Human Movement Science, 9(3), 241–289.

    Article  Google Scholar 

  • Mané, A. M., Adams, J. A., & Donchin, E. (1989). Adaptive and part-whole training in the acquisition of a complex perceptual-motor skill. Acta Psychologica, 71(1), 179–196.

    Article  Google Scholar 

  • Mann, K. V. (2011). Theoretical perspectives in medical education: Past experience and future possibilities. Medical Education, 45, 60–68.

    Article  PubMed  Google Scholar 

  • Martin, J. A., Regehr, G., Reznick, R., MacRae, H., Murnaghan, J., Hutchison, C., et al. (1997). Objective structured assessment of technical skill (OSATS) for surgical residents. British Journal of Surgery, 84(2), 273–278.

    Article  PubMed  Google Scholar 

  • Masters, R. S., Lo, C. Y., Maxwell, J. P., & Patil, N. G. (2008a). Implicit motor learning in surgery: Implications for multi-tasking. Surgery, 143, 140–145.

    Article  PubMed  Google Scholar 

  • Masters, R. S. W., MacMahon, K. M. A., & Pall, H. S. (2004). Implicit motor learning in Parkinson’s disease. Rehabilitation Psychology, 49, 79–82.

    Article  Google Scholar 

  • Masters, R. S. W., Poolton, J. M., Maxwell, J. P., et al. (2008b). Implicit motor learning and complex decision making in time-constrained environments. Journal of Motor Behavior, 40, 71–79.

    Article  PubMed  Google Scholar 

  • Maxwell, J. P., Masters, R. S. W., Kerr, E., et al. (2001). The implicit benefit of learning without errors. Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology, 54, 1049–1068.

    Article  Google Scholar 

  • McDaniel, M. (2012). Put the SPRINT in Knowledge Training: Training with SPacing, Retrieval, and INTerleaving. In A. F. Healy & L. E. Bourne Jr (Eds.), Training cognition: Optimizing efficiency, durability, and generalizability (pp. 267–286). New York: Psychology Press.

    Google Scholar 

  • McDermott, P.L., Carolan, T., & Wickens, C.D. (2012). Part task training methods in simulated and realistic tasks. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, SAGE Publications, 56(1), 2502–2506.

  • McDougall, E. M., Corica, F. A., Boker, J. R., Sala, L. G., Stoliar, G., Borin, J. F., et al. (2006). Construct validity testing of a laparoscopic surgical simulator. Journal of the American College of Surgeons, 202(5), 779–787.

    Article  PubMed  Google Scholar 

  • McGaghie, W. C., Issenberg, S. B., Cohen, M. E. R., Barsuk, J. H., & Wayne, D. B. (2011). Does simulation-based medical education with deliberate practice yield better results than traditional clinical education? A meta-analytic comparative review of the evidence. Academic Medicine: Journal of the Association of American Medical Colleges, 86(6), 706–711.

    Article  Google Scholar 

  • Moulton, C.A.E., Dubrowski, A., MacRae, H., Graham, B., Grober, E., & Reznick, R. (2006). Teaching surgical skills: what kind of practice makes perfect? A randomized, controlled trial. Annals of surgery, 244(3), 400.

    Google Scholar 

  • Mullen, R., Hardy, L., & Oldham, A. (2007). Implicit and explicit control of motor actions: Revisiting some early evidence. British Journal of Psychology, 98, 141–156.

    Article  PubMed  Google Scholar 

  • Nakamura, J., & Csikszentmihalyi, M. (2002). The concept of flow. In C. R. Snyder & S. J. Lopez (Eds.), Handbook of positive psychology (pp. 89–105). Oxford: New York.

    Google Scholar 

  • Peck, A. C., & Detweiler, M. C. (2000). Training concurrent multistep procedural tasks. Human Factors: The Journal of the Human Factors and Ergonomics Society, 42(3), 379–389.

    Article  Google Scholar 

  • Plant, E. A., Ericsson, K. A., Hill, L., & Asberg, K. (2005). Why study time does not predict grade point average across college students: Implications of deliberate practice for academic performance. Contemporary Educational Psychology, 30(1), 96–116.

    Google Scholar 

  • Pluyter, J. R., Buzink, S. N., Rutkowski, A. F., & Jakimowicz, J. J. (2010). Do absorption and realistic distraction influence performance of component task surgical procedure? Surgical endoscopy, 24(4), 902–907.

    Google Scholar 

  • Pluyter, J. R., Rutkowski, A., Jakimowicz, J.J., & Saunders, C.S. (2012). Measuring users’ mental strain when performing technology based surgical tasks on a surgical simulator using thermal imaging technology. 45th Hawaii International Conference on System Science (HICSS), (pp. 2920–2926).

  • Poolton, J. M., Masters, R. S. W., & Maxwell, J. P. (2005). The relationship between initial errorless learning conditions and subsequent performance. Human Movement Science, 24(3), 362–378.

    Google Scholar 

  • Poolton, J. M., Masters, R. S. W., & Maxwell, J. P. (2007). Passing thoughts on the evolutionary stability of implicit motor behavior: Performance retention under physiological fatigue. Consciousness and Cognition, 16, 456–468.

    Article  PubMed  Google Scholar 

  • Proteau, L., Blandin, Y., Alain, C., & Dorion, A. (1994). The effects of the amount and variability of practice on the learning of a multi-segmented motor task. Acta Psychologica, 85(1), 61–74.

    Article  PubMed  Google Scholar 

  • Purves, D., Cabeza, R., Huettel, S. A., LaBar, K. S., Platt, M. L., & Woldorff, M. G. (2012). Principles of Cognitive Neuroscience (2nd ed.). Sunderland: Sinauer Associates Inc.

    Google Scholar 

  • Reber, A. S. (1967). Implicit learning of artificial grammars. Journal of Verbal Learning and Verbal Behavior, 5, 855–863.

    Article  Google Scholar 

  • Reznick, R. K., & MacRae, H. (2006). Teaching surgical skills—changes in the wind. New England Journal of Medicine, 355(25), 2664–2669.

    Article  PubMed  Google Scholar 

  • Risucci, D., Geiss, A., Gellman, L., Pinard, B., & Rosser, J. (2001). Surgeon-specific factors in the acquisition of laparoscopic surgical skills. The American Journal of Surgery, 181(4), 289–293.

    Article  Google Scholar 

  • Ritter, E. M., McClusky, D. A., Gallagher, A. G., & Smith, C. D. (2005). Real-time objective assessment of knot quality with a portable tensiometer is superior to execution time for assessment of laparoscopic knot-tying performance. Surgical Innovation, 12(3), 233–237.

    Article  PubMed  Google Scholar 

  • Rook, J. W., & Zijlstra, F. R. (2006). The contribution of various types of activities to recovery. European Journal of Work and Organizational Psychology, 15(2), 218–240.

    Article  Google Scholar 

  • SAGES: Society of American Gastrointestinal and Endoscopic Surgeons (2013). Fundamentals of laparoscopic surgery (FLS). http://www.flsprogram.org/wp-content/uploads/2013/05/FLS-Information-Bulletin-May-2013.doc.

  • Salas, E., Bowers, C. A., & Rhodenizer, L. (1998). It is not how much you have but how you use it: Toward a rational use of simulation to support aviation training. The International Journal of Aviation Psychology, 8(3), 197–208.

    Article  PubMed  Google Scholar 

  • Salden, R. J., Paas, F., & van Merrienboer, J. J. (2006). A comparison of approaches to learning task selection in the training of complex cognitive skills. Computers in Human Behavior, 22(3), 321–333.

    Article  Google Scholar 

  • Salkini, M. W., & Hamilton, A. J. (2010). The effect of age on acquiring laparoscopic skills. Journal of Endourology, 24(3), 377–379.

    Article  PubMed  Google Scholar 

  • Sanders, C. W., Sadoski, M., Bramson, R., Wiprud, R., & Van Walsum, K. (2004). Comparing the effects of physical practice and mental imagery rehearsal on learning basic surgical skills by medical students. American Journal of Obstetrics and Gynecology, 191(5), 1811–1814.

    Article  PubMed  Google Scholar 

  • Sanders, C. W., Sadoski, M., van Walsum, K., Bramson, R., Wiprud, R., & Fossum, T. W. (2008). Learning basic surgical skills with mental imagery: using the simulation centre in the mind. Medical Education, 42(6), 607–612.

    Article  PubMed  Google Scholar 

  • Sanders, C. W., Sadoski, M., Wasserman, R. M., Wiprud, R., English, M., & Bramson, R. (2007). Comparing the effects of physical practice and mental imagery rehearsal on learning basic venipuncture by medical students. Imagination, Cognition and Personality, 27(2), 117–127.

    Article  Google Scholar 

  • Schmidt, R. A., & Bjork, R. A. (1992). New conceptualizations of practice: Common principles in three paradigms suggest new concepts for training. Psychological Science, 3(4), 207–217.

    Article  Google Scholar 

  • Schreuder, H. W., Oei, G., Maas, M., Borleffs, J. C., & Schijven, M. P. (2011). Implementation of simulation in surgical practice: Minimally invasive surgery has taken the lead: The Dutch experience. Medical Teacher, 33(2), 105–115.

    Article  PubMed  Google Scholar 

  • Seymour, N. E. (2008). VR to OR: A review of the evidence that virtual reality simulation improves operating room performance. World Journal of Surgery, 32(2), 182–188.

    Article  PubMed  Google Scholar 

  • Seymour, N. E., Gallagher, A. G., Roman, S. A., O’Brien, M. K., Bansal, V. K., Andersen, D. K., et al. (2002). Virtual reality training improves operating room performance: Results of a randomized, double-blinded study. Annals of Surgery, 236(4), 458.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shapiro, M. J., Morey, J. C., Small, S. D., Langford, V., Kaylor, C. J., Jagminas, L., et al. (2004). Simulation based teamwork training for emergency department staff: Does it improve clinical team performance when added to an existing didactic teamwork curriculum? Quality and Safety in Health Care, 13(6), 417–421.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shea, C. H., Lai, Q., Black, C., & Park, J. H. (2000). Spacing practice sessions across days benefits the learning of motor skills. Human Movement Science, 19(5), 737–760.

    Article  Google Scholar 

  • Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic human information processing: II. Perceptual learning, automatic attending, and a general theory. Psychological Review, 84(2), 127–190.

    Article  Google Scholar 

  • Son, L. K. (2004). Spacing one’s study: evidence for a metacognitive control strategy. Journal of Experimental Psychology Learning, Memory, and Cognition, 30(3), 601–604.

    Article  PubMed  Google Scholar 

  • Strandbygaard, J., Bjerrum, F., Maagaard, M., Winkel, P., Larsen, C. R., Ringsted, C., et al. (2013). Instructor feedback versus no instructor feedback on performance in a laparoscopic virtual reality simulator. Annals of Surgery, 257(5), 839–844.

    Article  PubMed  Google Scholar 

  • Sturm, L. P., Windsor, J. A., Cosman, P. H., Cregan, P., Hewett, P. J., & Maddern, G. J. (2008). A systematic review of skills transfer after surgical simulation training. Annals of Surgery, 248(2), 166–179.

    Article  PubMed  Google Scholar 

  • Sweller, J., Van Merrienboer, J. J., & Paas, F. G. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10(3), 251–296.

    Article  Google Scholar 

  • Teague, R. C., Gittelman, S. S., & Park, O. C. (1994). A review of literature on part-task and whole-task training and context dependency. Alexandria: Army Research Institute for the Behavioral and Social Sciences.

    Google Scholar 

  • Thijssen, A. S., & Schijven, M. P. (2010). Contemporary virtual reality laparoscopy simulators: Quicksand or solid grounds for assessing surgical trainees? The American Journal of Surgery, 199(4), 529–541.

    Article  Google Scholar 

  • Tholey, G., Desai, J. P., & Castellanos, A. E. (2005). Force feedback plays a significant role in minimally invasive surgery: Results and analysis. Annals of Surgery, 241(1), 102–109.

    PubMed  PubMed Central  Google Scholar 

  • Van der Linden, D. (2011). The urge to stop: The cognitive and biological nature of acute mental fatigue. In P. L. Ackerman (Ed.), Cognitive fatigue: Multidisciplinary perspectives on current research and future applications (pp. 149–164). Washington, DC: APA Press.

    Google Scholar 

  • Van der Wal, G. (2007). Risico’s minimaal invasieve chirurgie onderschat. Den Haag: Inspectie voor de Gezondheidszorg.

    Google Scholar 

  • Van Gog, T., Ericsson, K. A., Rikers, R. M., & Paas, F. (2005). Instructional design for advanced learners: Establishing connections between the theoretical frameworks of cognitive load and deliberate practice. Educational Technology Research and Development, 53(3), 73–81.

    Article  Google Scholar 

  • Van Gog, T., & Paas, F. (2008). Instructional efficiency: Revisiting the original construct in educational research. Educational Psychologist, 43(1), 16–26.

    Article  Google Scholar 

  • Van Sickle, K. R., Baghai, M., Huang, I. P., Goldenberg, A., Smith, C. D., & Ritter, E. M. (2008). Construct validity of an objective assessment method for laparoscopic intracorporeal suturing and knot tying. American Journal of Surgery, 196(1), 74–80.

    Article  PubMed  Google Scholar 

  • Whiting, H. T. A., & den Brinker, B. P. (1981). Image of the act. In J. P. Das, R. Mulcahy, & A. E. Wall (Eds.), Learning difficulties. New York: Plenum.

    Google Scholar 

  • Wickens, C., Hutchins, S., Carolan, T., & Cumming, J. (2011). Investigating the impact of training on transfer a meta-analytic approach. SAGE Publications: In Proceedings of the Human Factors and Ergonomics Society Annual Meeting 55(1), 2138–2142.

    Google Scholar 

  • Wickens, C. D., Hutchins, S., Carolan, T., & Cumming, J. (2013). Effectiveness of part-task training and increasing-difficulty training strategies: A meta-analysis approach. Human Factors, 55(2), 461–470.

    Article  PubMed  Google Scholar 

  • Wightman, D. C., & Lintern, G. (1985). Part-task training for tracking and manual control. Human Factors, 27, 267–283.

    Google Scholar 

  • Wixted, J. T., & Carpenter, S. K. (2007). The Wickelgren power law and the Ebbinghaus savings function. Psychological Science, 18(2), 133–134.

    Article  PubMed  Google Scholar 

  • Wulf, G., Shea, C., & Lewthwaite, R. (2010). Motor skill learning and performance: A review of influential factors. Medical Education, 44(1), 75–84.

    Article  PubMed  Google Scholar 

  • Zendejas, B., Brydges, R., Hamstra, S. J., & Cook, D. A. (2013). State of the evidence on simulation-based training for laparoscopic surgery: A systematic review. Annals of Surgery, 257(4), 586–593.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido P. H. Band.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spruit, E.N., Band, G.P.H., Hamming, J.F. et al. Optimal training design for procedural motor skills: a review and application to laparoscopic surgery. Psychological Research 78, 878–891 (2014). https://doi.org/10.1007/s00426-013-0525-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-013-0525-5

Keywords

Navigation