Skip to main content
Log in

Sucrose metabolism in cyanobacteria: sucrose synthase from Anabaena sp. strain PCC 7119 is remarkably different from the plant enzymes with respect to substrate affinity and amino-terminal sequence

  • Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract.

The pathway of sucrose metabolism in cyanobacteria is just starting to be elucidated. The present study describes the first isolation and biochemical characterization of a prokaryotic sucrose synthase (SS, EC 2.4.1.13). Two SS forms (SS-I and SS-II) were detected in Anabaena sp. strain PCC 7119. The isoform SS-II was purified 457-fold and its amino-terminal portion sequenced. Substrate specificity, kinetic constants, native protein and subunit molecular masses, and the effect of different ions and metabolites were studied for SS-II. Anabaena SS was shown to be a tetramer with a 92-kDa polypeptide that was recognized by maize SS polyclonal antibodies. Some striking differences from plant enzymes were demonstrated with respect to substrate affinities, regulation by metal ions and ATP, and the amino-acid sequence of the N-terminal region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received: 27 April 1999 / Accepted: 20 July 1999

Rights and permissions

Reprints and permissions

About this article

Cite this article

Porchia, A., Curatti, L. & Salerno, G. Sucrose metabolism in cyanobacteria: sucrose synthase from Anabaena sp. strain PCC 7119 is remarkably different from the plant enzymes with respect to substrate affinity and amino-terminal sequence. Planta 210, 34–40 (1999). https://doi.org/10.1007/s004250050651

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004250050651

Navigation