Skip to main content
Log in

Carotenoid gene expression explains the difference of carotenoid accumulation in carrot root tissues

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion Variations in gene expression can partially explain the difference of carotenoid accumulation in secondary phloem and xylem of fleshy carrot roots.

The carrot root is well divided into two different tissues separated by vascular cambium: the secondary phloem and xylem. The equilibrium between these two tissues represents an important issue for carrot quality, but the knowledge about the respective carotenoid accumulation is sparse. The aim of this work was (i) to investigate if variation in carotenoid biosynthesis gene expression could explain differences in carotenoid content in phloem and xylem tissues and (ii) to investigate if this regulation is differentially modulated in the respective tissues by water-restricted growing conditions. In this work, five carrot genotypes contrasting by their root color were studied in control and water-restricted conditions. Carotenoid content and the relative expression of 13 genes along the carotenoid biosynthesis pathway were measured in the respective tissues. Results showed that in orange genotypes and the purple one, carotenoid content was higher in phloem compared to xylem. For the red one, no differences were observed. Moreover, in control condition, variations in gene expression explained the different carotenoid accumulations in both tissues, while in water-restricted condition, no clear association between gene expression pattern and variations in carotenoid content could be detected except in orange-rooted genotypes. This work shows that the structural aspect of carrot root is more important for carotenoid accumulation in relation with gene expression levels than the consequences of expression changes upon water restriction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(adapted from Perrin et al. 2016)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baranska M, Baranski R, Schulz H, Nothnagel T (2006) Tissue-specific accumulation of carotenoids in carrot roots. Planta 224:1028–1037

    Article  CAS  PubMed  Google Scholar 

  • Baranska M, Baranski R, Grzebelus E, Roman M (2011) In situ detection of a single carotenoid crystal in a plant cell using Raman microspectroscopy. Vib Spectrosc 56:166–169

    Article  CAS  Google Scholar 

  • Bartley GE, Scolnik PA (1995) Plant carotenoids: pigments for photoprotection, visual attraction, and human health. Plant Cell 7:1027–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buishand JG, Gabelman WH (1979) Investigations on the inheritance of color and carotenoid content in phloem and xylem of carrot roots (Daucus carota L.). Euphytica 28:611–632

    Article  CAS  Google Scholar 

  • Cazzonelli CI, Pogson BJ (2010) Source to sink: regulation of carotenoid biosynthesis in plants. Trends Plant Sci 15:266–274

    Article  CAS  PubMed  Google Scholar 

  • Clotault J, Peltier D, Berruyer R et al (2008) Expression of carotenoid biosynthesis genes during carrot root development. J Exp Bot 59:3563–3573

    Article  CAS  PubMed  Google Scholar 

  • Clotault J, Peltier D, Soufflet-Freslon V et al (2012) Differential selection on carotenoid biosynthesis genes as a function of gene position in the metabolic pathway: a study on the carrot and dicots. PLoS One 7:e38724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Rosso VV, Mercadante AZ (2007) Identification and quantification of carotenoids, by HPLC-PDA-MS/MS, from amazonian fruits. J Agric Food Chem 55:5062–5072

    Article  PubMed  Google Scholar 

  • Favati F, Lovelli S, Galgano F et al (2009) Processing tomato quality as affected by irrigation scheduling. Sci Hortic 122:562–571

    Article  Google Scholar 

  • Flores HE, Hoy MW, Pickard JJ (1987) Secondary metabolites from root cultures. Trends Biotechnol 5:64–69

    Article  CAS  Google Scholar 

  • Fuentes P, Pizarro L, Moreno JC et al (2012) Light-dependent changes in plastid differentiation influence carotenoid gene expression and accumulation in carrot roots. Plant Mol Biol 79:47–59

    Article  CAS  PubMed  Google Scholar 

  • Girousse C, Bournoville R, Bonnemain JL (1996) Water deficit-induced changes in concentrations in proline and some other amino acids in the phloem sap of Alfalfa. Plant Physiol 111:109–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoad GV (1978) Effect of water stress on abscisic acid levels in white lupin (Lupinus albus L.) fruit, leaves and phloem exudate. Planta 142:287–290

    Article  CAS  PubMed  Google Scholar 

  • Iorizzo M, Ellison S, Senalik D et al (2016) A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution. Nat Genet 48:657–666. doi:10.1038/ng.3565

    Article  CAS  PubMed  Google Scholar 

  • Iuchi S, Kobayashi M, Taji T et al (2001) Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J 27:325–333

    Article  CAS  PubMed  Google Scholar 

  • Josse EM, Simkin AJ, Gaffé J et al (2000) A plastid terminal oxidase associated with carotenoid desaturation during chromoplast differentiation. Plant Physiol 123:1427–1436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jourdan M, Gagné S, Dubois-Laurent C et al (2015) Carotenoid content and root color of cultivated carrot: a candidate-gene association study using an original broad unstructured population. PLoS One 10:e0116674

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim JE, Rensing KH, Douglas CJ, Cheng KM (2010) Chromoplasts ultrastructure and estimated carotene content in root secondary phloem of different carrot varieties. Planta 231:549–558

    Article  CAS  PubMed  Google Scholar 

  • Li F, Vallabhaneni R, Wurtzel E (2008) PSY3, a new member of the phytoene synthase gene family conserved in the Poaceae and regulator of abiotic stress-induced root carotenogenesis. Plant Physiol 146:1333–1345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maass D, Arango J, Wüst F et al (2009) Carotenoid crystal formation in Arabidopsis and carrot roots caused by increased phytoene synthase protein levels. PLoS One 4:e6373

    Article  PubMed  PubMed Central  Google Scholar 

  • Nicolle C, Simon G, Rock E et al (2004) Genetic variability influences carotenoid, vitamin, phenolic, and mineral content in white, yellow, purple, orange, and dark-orange carrot cultivars. J Am Hortic Sci 129:523–529

    CAS  Google Scholar 

  • Perrin F, Brahem M, Dubois-Laurent C et al (2016) Differential pigment accumulation in carrot leaves and roots during two growing periods. J Agric Food Chem 64:906–912

    Article  CAS  PubMed  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phan CT, Hsu H (1973) Physical and chemical changes occurring in the carrot root during storage. Can J Plant Sci 53:629–634

    Article  Google Scholar 

  • Qin X, Zeevaart JAD (2002) Overexpression of a 9-cis-epoxycarotenoid dioxygenase gene in Nicotiana plumbaginifolia increases abscisic acid and phaseic acid levels and enhances drought tolerance. Plant Physiol 128:544–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Sola MÁ, Arbona V, Gomez-Cadenas A et al (2014) A root specific induction of carotenoid biosynthesis contributes to ABA production upon salt stress in Arabidopsis. PLoS One 9:e90765

    Article  PubMed  PubMed Central  Google Scholar 

  • Sennepin AD, Charpentier S, Normand T et al (2009) Multiple reprobing of Western blots after inactivation of peroxidase activity by its substrate, hydrogen peroxide. Anal Biochem 393:129–131

    Article  CAS  PubMed  Google Scholar 

  • Stagnari F, Galieni A, Speca S, Pisante M (2014) Water stress effects on growth, yield and quality traits of red beet. Sci Hortic 165:13–22

    Article  CAS  Google Scholar 

  • Surles RL, Weng N, Simon PW, Tanumihardjo SA (2004) Carotenoid profiles and consumer sensory evaluation of specialty carrots (Daucus carota, L.) of various colors. J Agric Food Chem 52:3417–3421

    Article  CAS  PubMed  Google Scholar 

  • Tan B-C, Joseph LM, Deng W-T et al (2003) Molecular characterization of the Arabidopsis 9-cis epoxycarotenoid dioxygenase gene family. Plant J 35:44–56

    Article  CAS  PubMed  Google Scholar 

  • Welsch R, Maass D, Voegel T et al (2007) Transcription factor RAP2.2 and its interacting partner SINAT2: stable elements in the carotenogenesis of Arabidopsis leaves. Plant Physiol 145:1073–1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welsch R, Wüst F, Bär C et al (2008) A third phytoene synthase is devoted to abiotic stress-induced abscisic acid formation in rice and defines functional diversification of phytoene synthase genes. Plant Physiol 147:367–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang D, Hamauzu Y (2004) Phenolic compounds and their antioxidant properties in different tissues of carrots (Daucus carota L.). Food Agric Environ 2:95–100

    Google Scholar 

  • Zhao C, Craig JC, Petzold EH et al (2005) The xylem and phloem transcriptomes from secondary tissues of the Arabidopsis root-hypocotyl1[w]. Plant Physiol 138:803–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Muriel Bahut, Laurence Hibrand Saint-Oyant, and Annie Chastellier from the ANAN platform (analyze of nucleic acids—UMR1345 Institut de Recherche en Horticulture et Semences IRHS, France) for their technical help. We thank Marie-Noëlle Brisset and Matthieu Gaucher for the discussions about gene expressions and clustering analysis. We thank Rémi Gardet, Nicolas Dousset, Jacky Granger, and Daniel Sochard from INEM (Mutualized experimental facilities—UMR1345 Institut de Recherche en Horticulture et Semences IRHS, France) for the experimental installation. Funding was provided by Région Pays de la Loire.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Geoffriau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perrin, F., Hartmann, L., Dubois-Laurent, C. et al. Carotenoid gene expression explains the difference of carotenoid accumulation in carrot root tissues. Planta 245, 737–747 (2017). https://doi.org/10.1007/s00425-016-2637-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-016-2637-9

Keywords

Navigation