Skip to main content
Log in

Function of Hevea brasiliensis NAC1 in dehydration-induced laticifer differentiation and latex biosynthesis

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusions

HbNAC1 is a transcription factor in rubber plants whose expression is induced by dehydration, leading to latex biosynthesis.

Laticifer is a special tissue in Hevea brasiliensis where natural rubber is biosynthesized and accumulated. In young stems of epicormic shoots, the differentiation of secondary laticifers can be induced by wounding, which can be prevented when the wounding site is wrapped. Using this system, differentially expressed genes were screened by suppression subtractive hybridization (SSH) and macroarray analyses. This led to the identification of several dehydration-related genes that could be involved in laticifer differentiation and/or latex biosynthesis, including a NAC transcription factor (termed as HbNAC1). Tissue sections confirmed that local tissue dehydration was a key signal for laticifer differentiation. HbNAC1 was localized at the nucleus and showed strong transcriptional activity in yeast, suggesting that HbNAC1 is a transcription factor. Furthermore, HbNAC1 was found to bind to the cis-element CACG in the promoter region of the gene encoding the small rubber particle protein (SRPP). Transgenic experiments also confirmed that HbNAC1 interacted with the SRPP promoter when co-expressed, and enhanced expression of the reporter gene β-glucuronidase occurred in planta. In addition, overexpression of HbNAC1 in tobacco plants conferred drought tolerance. Together, the data suggest that HbNAC1 might be involved in dehydration-induced laticifer differentiation and latex biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

AbA:

Aureobasidin A

DAPI:

4,6-Diamidino-2-phenylindole

DHN:

Dehydrin

GFP:

Green fluorescent protein

JA:

Jasmonic acid

LEA:

Late embryogenesis abundant-like proteins

NACRS:

NAC recognition sequence

SRPP:

Small rubber particle protein

SSH:

Suppression subtractive hybridization

VSP:

Vegetative storage protein

References

  • Baldwin IT, Schmelz EA, Ohnmeiss TE (1994) Wound-induced changes in root and shoot jasmonic acid pools correlate with induced nicotine synthesis in Nicotiana sylvestris spegazzini and comes. J Chem Ecol 20:2139–2157

    Article  CAS  PubMed  Google Scholar 

  • Benhamou N, Chamberland H, Pauze FJ (1990) Implication of pectic components in cell surface interactions between tomato root cells and Fusarium oxysporum f. sp. radicis-lycopersici: a cytochemical study by means of a lectin with polygalacturonic acid-binding specificity. Plant Physiol 92:995–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benikhlef L, L’Haridon F, Abou-Mansour E, Serrano M, Binda M, Costa A, Lehmann S, Metraux JP (2013) Perception of soft mechanical stress in Arabidopsis leaves activates disease resistance. BMC Plant Biol 13:133

    Article  PubMed  PubMed Central  Google Scholar 

  • Bergey DR, Orozco-Cardenas M, de Moura DS, Ryan CA (1999) A wound- and systemin-inducible polygalacturonase in tomato leaves. Proc Natl Acad Sci USA 96:1756–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birkenmeier GF, Ryan CA (1998) Wound signaling in tomato plants. Evidence that aba is not a primary signal for defense gene activation. Plant Physiol 117:687–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouquin T, Lasserre E, Pradier J, Pech JC, Balague C (1997) Wound and ethylene induction of the ACC oxidase melon gene CM-ACO1 occurs via two direct and independent transduction pathways. Plant Mol Biol 35:1029–1035

    Article  CAS  PubMed  Google Scholar 

  • Brown RL, Kazan K, McGrath KC, Maclean DJ, Manners JM (2003) A role for the GCC-box in jasmonate-mediated activation of the PDF1.2 gene of Arabidopsis. Plant Physiol 132:1020–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Browse J (2009) The power of mutants for investigating jasmonate biosynthesis and signaling. Phytochemistry 70:1539–1546

    Article  CAS  PubMed  Google Scholar 

  • Bu Q, Jiang H, Li CB, Zhai Q, Zhang J, Wu X, Sun J, Xie Q, Li C (2008) Role of the Arabidopsis thaliana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses. Cell Res 18:756–767

    Article  CAS  PubMed  Google Scholar 

  • Buschmann H (2016) Plant cell division analyzed by transient agrobacterium-mediated transformation of tobacco BY-2 Cells. Methods Mol Biol 1370:17–25

    Article  PubMed  Google Scholar 

  • Chang MM, Horovitz D, Culley D, Hadwiger LA (1995) Molecular cloning and characterization of a pea chitinase gene expressed in response to wounding, fungal infection and the elicitor chitosan. Plant Mol Biol 28:105–111

    Article  CAS  PubMed  Google Scholar 

  • Chye ML, Kush A, Tan CT, Chua NH (1991) Characterization of cDNA and genomic clones encoding 3-hydroxy-3-methylglutaryl-coenzyme A reductase from Hevea brasiliensis. Plant Mol Biol 16:567–577

    Article  CAS  PubMed  Google Scholar 

  • Cornish K (2001) Similarities and differences in rubber biochemistry among plant species. Phytochemistry 57:1123–1134

    Article  CAS  PubMed  Google Scholar 

  • Creelman RA, Mullet JE (1997) Biosynthesis and action of Jasmonates in plants. Annu Rev Plant Physiol Plant Mol Biol 48:355–381

    Article  CAS  PubMed  Google Scholar 

  • Doares SH, Syrovets T, Weiler EW, Ryan CA (1995) Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway. Proc Natl Acad Sci USA 92:4095–4098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farmer EE, Ryan CA (1990) Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci USA 87:7713–7716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fonseca S, Chico JM, Solano R (2009) The jasmonate pathway: the ligand, the receptor and the core signalling module. Curr Opin Plant Biol 12:539–547

    Article  CAS  PubMed  Google Scholar 

  • Fujita M, Fujita Y, Maruyama K, Seki M, Hiratsu K, Ohme-Takagi M, Tran LS, Yamaguchi-Shinozaki K, Shinozaki K (2004) A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J 39:863–876

    Article  CAS  PubMed  Google Scholar 

  • Guo D, Li HL, Tang X, Peng SQ (2014) Molecular and functional characterization of the HbSRPP promoter in response to hormones and abiotic stresses. Transgenic Res 23:331–340

    Article  CAS  PubMed  Google Scholar 

  • Hao BZ, Wu JL (1982) Effects of wound (tapping) on laticifer differentiation in Hevea brasiliensis. Acta Bot Sin 24:388–391

    Google Scholar 

  • Hao BZ, Wu JL (1984) Acceleration of laticifer differentiation in Hevea brasiliensis by latex drainage. Chin J Trop Crops 5:19–23

    Google Scholar 

  • Hao BZ, Wu JL (2000) Laticifer differentiation in Hevea brasiliensis: induction by exogenous jasmonic acid and linolenic acid. Ann Bot 85:37–43

    Article  CAS  Google Scholar 

  • Hara-Nishimura I, Matsushima R (2003) A wound-inducible organelle derived from endoplasmic reticulum: a plant strategy against environmental stresses? Curr Opin Plant Biol 6:583–588

    Article  CAS  PubMed  Google Scholar 

  • Haswell ES, Peyronnet R, Barbier-Brygoo H, Meyerowitz EM, Frachisse JM (2008) Two MscS homologs provide mechanosensitive channel activities in the Arabidopsis root. Curr Biol 18:730–734

    Article  CAS  PubMed  Google Scholar 

  • Hiratsu K, Matsui K, Koyama T, Ohme-Takagi M (2003) Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis. Plant J 34:733–739

    Article  CAS  PubMed  Google Scholar 

  • Hong H, Xiao H, Yuan H, Zhai J, Huang X (2015) Cloning and characterisation of JAZ gene family in Hevea brasiliensis. Plant Biol (Stuttg) 17:618–624

    Article  CAS  Google Scholar 

  • Leon J, Rojo E, Sanchez-Serrano JJ (2001) Wound signalling in plants. J Exp Bot 52:1–9

    Article  CAS  PubMed  Google Scholar 

  • Li D, Deng Z, Chen C, Xia Z, Wu M, He P, Chen S (2010) Identification and characterization of genes associated with tapping panel dryness from Hevea brasiliensis latex using suppression subtractive hybridization. BMC Plant Biol 10:140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods (San Diego. Calif 25:402–408

    CAS  Google Scholar 

  • Lu PL, Chen NZ, An R, Su Z, Qi BS, Ren F, Chen J, Wang XC (2007) A novel drought-inducible gene, ATAF1, encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in Arabidopsis. Plant Mol Biol 63:289–305

    Article  CAS  PubMed  Google Scholar 

  • Mason HS, Mullet JE (1990) Expression of two soybean vegetative storage protein genes during development and in response to water deficit, wounding, and jasmonic acid. Plant Cell 2:569–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGurl B, Pearce G, Orozco-Cardenas M, Ryan CA (1992) Structure, expression, and antisense inhibition of the systemin precursor gene. Science 255:1570–1573

    Article  CAS  PubMed  Google Scholar 

  • Mithofer A, Ebel J, Felle HH (2005) Cation fluxes cause plasma membrane depolarization involved in beta-glucan elicitor-signaling in soybean roots. Mol Plant Microbe Interact 18:983–990

    Article  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F (2011) ROS signaling: the new wave? Trends Plant Sci 16:300–309

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa Y, Katagiri T, Shinozaki K, Qi Z, Tatsumi H, Furuichi T, Kishigami A, Sokabe M, Kojima I, Sato S, Kato T, Tabata S, Iida K, Terashima A, Nakano M, Ikeda M, Yamanaka T, Iida H (2007) Arabidopsis plasma membrane protein crucial for Ca2+ influx and touch sensing in roots. Proc Natl Acad Sci USA 104:3639–3644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson CE, Ryan CA (1980) In vitro synthesis of pre-proteins of vacuolar compartmented proteinase inhibitors that accumulate in leaves of wounded tomato plants. Proc Natl Acad Sci USA 77:1975–1979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nuhse TS (2012) Cell wall integrity signaling and innate immunity in plants. Front Plant Sci 3:280

    Article  PubMed  PubMed Central  Google Scholar 

  • Nurnberger T, Brunner F, Kemmerling B, Piater L (2004) Innate immunity in plants and animals: striking similarities and obvious differences. Immunol Rev 198:249–266

    Article  PubMed  Google Scholar 

  • Orozco-Cardenas M, Ryan CA (1999) Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proc Natl Acad Sci USA 96:6553–6557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearce G, Strydom D, Johnson S, Ryan CA (1991) A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science 253:895–897

    Article  CAS  PubMed  Google Scholar 

  • Pena-Cortes H, Fisahn J, Willmitzer L (1995) Signals involved in wound-induced proteinase inhibitor II gene expression in tomato and potato plants. Proc Natl Acad Sci USA 92:4106–4113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi T, Song S, Ren Q, Wu D, Huang H, Chen Y, Fan M, Peng W, Ren C, Xie D (2011) The Jasmonate-ZIM-domain proteins interact with the WD-Repeat/bHLH/MYB complexes to regulate Jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana. Plant Cell 23:1795–1814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saavedra L, Svensson J, Carballo V, Izmendi D, Welin B, Vidal S (2006) A dehydrin gene in Physcomitrella patens is required for salt and osmotic stress tolerance. Plant J 45:237–249

    Article  CAS  PubMed  Google Scholar 

  • Savatin DV, Gramegna G, Modesti V, Cervone F (2014) Wounding in the plant tissue: the defense of a dangerous passage. Front Plant Sci 5:470

    Article  PubMed  PubMed Central  Google Scholar 

  • Schaller F (2001) Enzymes of the biosynthesis of octadecanoid-derived signalling molecules. J Exp Bot 52:11–23

    Article  CAS  PubMed  Google Scholar 

  • Scheer JM, Ryan CA (1999) A 160-kD systemin receptor on the surface of lycopersicon peruvianum suspension-cultured cells. Plant Cell 11:1525–1536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stennis MJ, Chandra S, Ryan CA, Low PS (1998) Systemin potentiates the oxidative burst in cultured tomato cells. Plant Physiol 117:1031–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki N, Mittler R (2012) Reactive oxygen species-dependent wound responses in animals and plants. Free Radic Biol Med 53:2269–2276

    Article  CAS  PubMed  Google Scholar 

  • Tian WM, Shi MJ, Yu FY, Wu JL, Hao BZ, Cui KM (2003) Localized effects of mechanical wounding and exogenous jasmonic acid on the induction of secondary laticifer differentiation in relation to the distribution of jasmonic acid in Hevea brasiliensis. Acta Bot Sin 45:1366–1372

    CAS  Google Scholar 

  • Tian WM, Yang SG, Shi MJ, Zhang SX, Wu JL (2015) Mechanical wounding-induced laticifer differentiation in rubber tree (Muell. Arg.): an indicative role of dehydration, hydrogen peroxide, and jasmonates. J Plant Physiol 182:95–103

    Article  CAS  PubMed  Google Scholar 

  • Tran LS, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16:2481–2498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf S, Hematy K, Hofte H (2012) Growth control and cell wall signaling in plants. Annu Rev Plant Biol 63:381–407

    Article  CAS  PubMed  Google Scholar 

  • Xu ZY, Kim SY, Hyeon do Y, Kim DH, Dong T, Park Y, Jin JB, Joo SH, Kim SK, Hong JC, Hwang D, Hwang I (2013) The Arabidopsis NAC transcription factor ANAC096 cooperates with bZIP-type transcription factors in dehydration and osmotic stress responses. Plant Cell 25:4708–4724

  • Yu JH, Yang SG, Huang MJ, Tian WM (2007) Effects of season, exploitation and exogenous jasmonic acid on the laticifer differentiation in mature rubber tree. Chin J Trop Crops 28:1–5

    Google Scholar 

  • Zhao Y, Zhou LM, Chen YY, Yang SG, Tian WM (2011) MYC genes with differential responses to tapping, mechanical wounding, ethrel and methyl jasmonate in laticifers of rubber tree (Hevea brasiliensis Muell. Arg.). J Plant Physiol:1649–1658

  • Zimmermann MR, Maischak H, Mithofer A, Boland W, Felle HH (2009) System potentials, a novel electrical long-distance apoplastic signal in plants, induced by wounding. Plant Physiol 149:1593–1600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China [Grant nos. 31370608, 31260170, 31060107] and the Hainan Major Research Project for Science and Technology [Grant no. ZDZX2013023]. We would like to thank Professor Shiqing Peng for kindly providing the bait vectors for rubber biosynthesis related genes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Huang.

Ethics declarations

Conflict of interest

All authors declare they have no actual or potential competing financial interest.

Additional information

Yuxin Cao and Jinling Zhai contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 893 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Zhai, J., Wang, Q. et al. Function of Hevea brasiliensis NAC1 in dehydration-induced laticifer differentiation and latex biosynthesis. Planta 245, 31–44 (2017). https://doi.org/10.1007/s00425-016-2589-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-016-2589-0

Keywords

Navigation