Skip to main content

Advertisement

Log in

Identification and cloning of class II and III chitinases from alkaline floral nectar of Rhododendron irroratum, Ericaceae

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Class II and III chitinases belonging to different glycoside hydrolase families were major nectarins in Rhododendron irroratum floral nectar which showed significant chitinolytic activity.

Previous studies have demonstrated antimicrobial activity in plant floral nectar, but the molecular basis for the mechanism is still poorly understood. Two chitinases, class II (Rhchi2) and III (Rhchi3), were characterized from alkaline Rhododendron irroratum nectar by both SDS-PAGE and mass spectrometry. Rhchi2 (27 kDa) and Rhchi3 (29 kDa) are glycoside hydrolases (family 19 and 18) with theoretical pI of 8.19 and 7.04. The expression patterns of Rhchi2 and Rhchi3 were analyzed by semi-quantitative RT-PCR. Rhchi2 is expressed in flowers (corolla nectar pouches) and leaves while Rhchi3 is expressed in flowers. Chitinase in concentrated protein and fresh nectar samples was visualised by SDS-PAGE and chitinolytic activity in fresh nectar was determined spectrophotometrically via chitin-azure. Full length gene sequences were cloned with Tail-PCR and RACE. The amino acid sequence deduced from the coding region for these proteins showed high identity with known chitinases and predicted to be located in extracellular space. Fresh R. irroratum floral nectar showed significant chitinolytic activity. Our results demonstrate that class III chitinase (GH 18 family) also exists in floral nectar. The functional relationship between class II and III chitinases and the role of these pathogenesis-related proteins in antimicrobial activity in nectar is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

GH:

Glycosyl hydrolase

References

  • Adrangi S, Faramarzi MA (2013) From bacteria to human: a journey into the world of chitinases. Biotechnol Adv 31:1786–1795

    Article  CAS  PubMed  Google Scholar 

  • Akimoto C, Aoyagi H, Dicosmo F, Tanaka H (2000) Synergistic effect of active oxygen species and alginate on chitinase production by Wasabia japonica cells and its application. J Biosci Bioeng 89:131–137

    Article  CAS  PubMed  Google Scholar 

  • Alvarez ME, Pennell RI, Meijer PJ, Ishikawa A, Dixon RA, Lamb C (1998) Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell 92:773–784

    Article  CAS  PubMed  Google Scholar 

  • Baker HG, Baker I (1983) A brief historical review of the chemistry of floral nectar. In: Bentley B, Elias T (eds) The biology of nectaries. Columbia University Press, New York, pp 126–152

    Google Scholar 

  • Beintema JJ (1994) Structural features of plant chitinases and chitin-binding proteins. FEBS Lett 350:159–163

    Article  CAS  PubMed  Google Scholar 

  • Benhamou N, Joosten MHAJ, de Wit PJGM (1990) Subcellular localization of chitinase and of potential substrate in tomato root tissue infected by Fusarium oxysporum f. sp. radicis-lycopersici. Plant Physiol 92:1108–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Briesemeister S, Rahnenführer J, Kohlbacher O (2010) YLoc–an interpretable web server for predicting subcellular localization. Nucleic Acids Res 38:W497–W502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broglie K, Chet I, Holliday M, Cressman R, Biddle P, Knowlton S, Mauvais CJ, Broglie R (1991) Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science 254:1194–1197

    Article  CAS  PubMed  Google Scholar 

  • Brunner F, Stintzi A, Fritig B, Goddard Iii WA (1998) Substrate specificities of tobacco chitinases. Plant J 14:225–234

    Article  CAS  PubMed  Google Scholar 

  • Carter C, Thornburg RW (2000) Tobacco nectarin I: purification and characterization as a germin-like, manganese superoxide dismutase implicated in the defense of floral reproductive tissues. J Biol Chem 275:36726–36733

    Article  CAS  PubMed  Google Scholar 

  • Carter C, Thornburg RW (2004) Is the nectar redox cycle a floral defense against microbial attack? Trends Plant Sci 9:320–324

    Article  CAS  PubMed  Google Scholar 

  • Chamberlain DF (1982) A revision of Rhododendron II. subgenus Hymenanthes. Notes from the Royal Botanic Garden, Edinburgh 39:209–486

    Google Scholar 

  • Chamnongpol S, Willekens H, Moeder W, Langebartels C, Sandermann H Jr, van Montagu M, Inzé D, van Camp W (1998) Defense activation and enhanced pathogen tolerance induced by H2O2 in transgenic tobacco. Proc Natl Acad Sci USA 95:5818–5823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang KLB, Tai MC, Cheng FH (2001) Kinetics and products of the degradation of chitosan by hydrogen peroxide. J Agr Food Chem 49:4845–4851

    Article  CAS  Google Scholar 

  • Collinge DB, Kragh KM, Mikkelsen JD, Nielsen KK, Rasmussen U, Vad K (1993) Plant chitinases. Plant J 3:31–40

    Article  CAS  PubMed  Google Scholar 

  • Dore I, Legrand M, Cornelissen BJC, Bol JF (1991) Subcellular localization of acidic and basic PR proteins in tobacco mosaic virus infected tobacco. Arch Virol 120:97–107

    Article  CAS  PubMed  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JR, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Eilenberg H, Pnini-Cohen S, Schuster S, Movtchan A, Zilberstein A (2006) Isolation and characterization of chitinase genes from pitchers of the carnivorous plant Nepenthes khasiana. J Exp Bot 57:2775–2784

    Article  CAS  PubMed  Google Scholar 

  • Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2:953–971

    Article  CAS  PubMed  Google Scholar 

  • Esaka M, Teramoto T (1998) cDNA cloning, gene expression and secretion of chitinase in winged bean. Plant Cell Physiol 39:349–356

    Article  CAS  PubMed  Google Scholar 

  • Escalante-Perez M, Jaborsky M, Reinders J, Kurzai O, Hedrich R, Ache P (2012) Poplar extrafloral nectar is protected against plant and human pathogenic fungus. Mol Plant 5:1157–1159

    Article  CAS  PubMed  Google Scholar 

  • Evans JD, Armstrong TN (2006) Antagonistic interactions between honey bee bacterial symbionts and implications for disease. BMC Ecol 6:4. doi:10.1186/1472-6785-6-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferrari M, Bjornstad O, Partain J, Antonovics J (2006) A gravity model for the spread of a pollinator-borne plant pathogen. Am Nat 168:294–303

    Article  PubMed  Google Scholar 

  • Ferre F, Clote P (2006) DiANNA 1.1: an extension of the DiANNA web server for ternary cysteine classification. Nucleic Acids Res 34(Suppl 2): W182–W185

  • Flach J, Pilet PE, Jolles P (1992) What’s new in chitinase research? Experientia 48:701–716

    Article  CAS  PubMed  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols Handbook. Humana Press, Totowa, pp 571–607

    Chapter  Google Scholar 

  • Gonzalez-Teuber M, Eilmus S, Muck A, Svatos A, Heil M (2009) Pathogenesis-related proteins protect extrafloral nectar from microbial infestation. Plant J 58:464–473

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Teuber M, Pozo MJ, Muck A, Svatos A, Adame-Alvarez RM, Heil M (2010) Glucanases and chitinases as causal agents in the protection of acacia extrafloral nectar from infestation by phytopathogens. Plant Physiol 152:1705–1715

    Article  CAS  PubMed  Google Scholar 

  • Grover A (2012) Plant chitinases: genetic diversity and physiological roles. CRC Crit Rev Plant Sci 31:57–73

    Article  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine. Oxford University Press, New York

    Google Scholar 

  • Hamel F, Boivin R, Tremblay C, Bellemare G (1997) Structural and evolutionary relationships among chitinases of flowering plants. J Mol Evol 44:614–624

    Article  CAS  PubMed  Google Scholar 

  • Hamid R, Khan MA, Ahmad M et al (2013) Chitinases: an update. J Pharm Bioallied Sci 5:21–29

    PubMed  PubMed Central  Google Scholar 

  • Heil M (2011) Nectar: generation, regulation and ecological functions. Trends Plant Sci 16:191–200

    Article  CAS  PubMed  Google Scholar 

  • Heil M (2015) Extrafloral nectar at the plant-insect interface: a spotlight on chemical ecology, phenotypic plasticity, and food webs. Annu Rev Entomol 60:213–232

    Article  CAS  PubMed  Google Scholar 

  • Henrissat B, Davies G (1997) Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol 7:637–644

    Article  CAS  PubMed  Google Scholar 

  • Hillwig MS, Kanobe C, Thornburg RW, MacIntosh GC (2011) Identification of S-RNase and peroxidase in petunia nectar. J Plant Physiol 168:734–738

    Article  CAS  PubMed  Google Scholar 

  • Huet J, Rucktooa P, Clantin B, Azarkan M, Looze Y, Villeret V, Wintjens R (2008) X-ray structure of papaya chitinase reveals the substrate binding mode of glycosyl hydrolase family 19 chitinases. Biochemistry 47:8283–8291

    Article  CAS  PubMed  Google Scholar 

  • Iseli B, Armand S, Boller T, Neuhaus JM, Henrissat B (1996) Plant chitinases use two different hydrolytic mechanisms. FEBS Lett 382:186–188

    Article  CAS  PubMed  Google Scholar 

  • Jaakola L, Pirttilä A, Halonen M, Hohtola A (2001) Isolation of high quality RNA from bilberry (Vaccinium myrtillus L.) fruit. Mol Biotechnol 19:201–203

    Article  CAS  PubMed  Google Scholar 

  • Jach G, Goruhardt B, Mundy J, Logemann J, Pinsdorf E, Leah R, Schell J, Maas C (1995) Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco. Plant J 8:97–109

    Article  CAS  PubMed  Google Scholar 

  • Kasprzewska A (2003) Plant chitinases-regulation and function. Cell Mol Biol Lett 8:809–824

    CAS  PubMed  Google Scholar 

  • Kikuchi T, Masuda K (2009) Class II chitinase accumulated in the bark tissue involves with the cold hardiness of shoot stems in highbush blueberry (Vaccinium corymbosum L.). Sci Hortic-Amsterdam 120:230–236

    Article  CAS  Google Scholar 

  • Kobayashi N, Horikoshi T, Katsuyama H, Handa T, Takayanagi K (1998) A simple and efficient DNA extraction method for plants, especially woody plants. Plant Tissue Culture Biotech 4:72–80

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Lawton K, Ward E, Payne G, Moyer M, Ryals J (1992) Acidic and basic class III chitinase mRNA accumulation in response to TMV infection of tobacco. Plant Mol Biol 19:735–743

    Article  CAS  PubMed  Google Scholar 

  • Lin W, Hu X, Zhang W, Rogers WJ, Cai W (2005) Hydrogen peroxide mediates defence responses induced by chitosans of different molecular weights in rice. J Plant Physiol 162:937–944

    Article  CAS  PubMed  Google Scholar 

  • Liu YG, Chen Y (2007) High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. Biotechniques 43:649–656

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Cai J, Xie CC, Liu C, Chen YH (2010) Purification and partial characterization of a 36-kDa chitinase from Bacillus thuringiensis subsp. colmeri, and its biocontrol potential. Enzyme Microb Tech 46:252–256

    Article  CAS  Google Scholar 

  • Melchers LS, Ponstein AS, Sela-Buurlage MB, Vloemans SA, Cornelissen BJC (1993) In vitro anti-microbial activities of defense proteins and biotechnology. In: Fritig B, Legrand M (eds) Mechanisms of plant defense. Kluwer Academic Publishers, Dordrecht, pp 401–410

    Chapter  Google Scholar 

  • Minic Z (2008) Physiological roles of plant glycoside hydrolases. Planta 227:723–740

    Article  CAS  PubMed  Google Scholar 

  • Molan PC, Mizrahi A, Lensky Y (1997) Honey as an antimicrobial agent. In: Mizrahi A, Lensky Y (eds) Bee products: properties, applications and apitherapy. Plenum Press, New York, pp 27–37

    Chapter  Google Scholar 

  • Nakatsuka A, Mizuta D, Kii Y, Miyajimac I, Kobayashia N (2008) Isolation and expression analysis of flavonoid biosynthesis genes in evergreen azalea. Sci Hortic-Amsterdam 118:314–320

    Article  CAS  Google Scholar 

  • Neuhaus JM, Fritig B, Linthorst HJM, Meins F, Mikkelsen J, Ryals J (1996) A revised nomenclature for chitinase genes. Plant Mol Biol Rep 14:102–104

    Article  CAS  Google Scholar 

  • Nicolson S, Thornburg RW (2007) Nectar chemistry. In: Pacini E, Nepi M, Nicolson S (eds) Nectary and nectar: a modern treatise. Springer, Amsterdam, pp 215–263

    Chapter  Google Scholar 

  • Nocentini D, Guarnieri M, Soligo C (2015) Nectar defense and hydrogen peroxide in floral nectar of Cucurbita pepo. Acta Agrobotanica 68:187–193

    Article  Google Scholar 

  • Oldach KH, Becker D, Lorz H (2001) Heterologous expression of genes mediating enhanced fungal resistance in transgenic wheat. Mol Plant Microbe Interact 14:832–838

    Article  CAS  PubMed  Google Scholar 

  • Pacini E, Nicolson SW (2007) Introduction. In: Nicolson SW, Nepi M, Pacini E (eds) Nectaries and nectar. Springer, Dordrecht, pp 1–18

    Chapter  Google Scholar 

  • Park CH, Kim S, Park JY, Ahn IP, Jwa NS, Im KH, Lee YH (2004) Molecular characterization of a pathogenesis-related protein 8 gene encoding a class III chitinase in rice. Mol Cells 17:144–150

    CAS  PubMed  Google Scholar 

  • Peng Y, Arora R, Li GW, Wang X, Fessehaie A (2008) Rhododendron catawbiense plasma membrane intrinsic proteins are aquaporins, and their over-expression compromises constitutive freezing tolerance and cold acclimation ability of transgenic Arabidopsis plants. Plant, Cell Environ 31:1275–1289

    Article  CAS  Google Scholar 

  • Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786

    Article  CAS  PubMed  Google Scholar 

  • Primack RB (1985) Longevity of individual flowers. Annu Rev Ecol Syst 16:15–37

    Article  Google Scholar 

  • Prŷs-Jones OE, Willmer PG (1992) The biology of alkaline nectar in the purple toothwort (Lathraea clandestina): ground level defences. Biol J Linn Soc 45:373–388

    Article  Google Scholar 

  • Schagger H, von Jagow G (1987) Tricine-sodium dodecyl sulfatepolyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379

    Article  CAS  PubMed  Google Scholar 

  • Schlumbaum A, Mauch F, Vögeli U, Boller T (1986) Plant chitinases are potent inhibitors of fungal growth. Nature 324:365–367

    Article  CAS  Google Scholar 

  • Seo PJ, Wielsch N, Kessler D, Svatos A, Park CM, Baldwin IT, Kim SG (2013) Natural variation in floral nectar proteins of two Nicotiana attenuata accessions. BMC Plant Biol 13:101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh A, Isaac Kirubakaran S, Sakthivel N (2007) Heterologous expression of new antifungal chitinase from wheat. Protein Expres Purif 56:100–109

    Article  CAS  Google Scholar 

  • Takenaka Y, Nakano S, Tamoi M, Sakuda S, Fukamizo T (2009) Chitinase gene expression in response to environmental stresses in Arabidopsis thaliana: chitinase inhibitor allosamidin enhances stress tolerance. Biosci Biotech Biochem 73:1066–1071

    Article  CAS  Google Scholar 

  • Trudel J, Asselin A (1989) Detection of chitinase activity after polyacrylamide gel electrophoresis. Anal Biochem 178:362–366

    Article  CAS  PubMed  Google Scholar 

  • Udaya Prakash NA, Jayanthi M, Sabarinathan R, Sabarinathan R, Kangueane P, Mathew L, Sekar K (2010) Evolution, homology conservation, and identification of unique sequence signatures in GH19 family chitinases. J Mol Evol 70:466–478

    Article  CAS  PubMed  Google Scholar 

  • Vitale A, Chrispeels MJ (1992) Sorting of proteins to the vacuoles of plant cells. BioEssays 14:151–160

    Article  PubMed  Google Scholar 

  • Wagner R, Mugnaini S, Sniezko R, Hardie D, Poulis B, Nepi M, Pacini E, von Aderkas P (2007) Proteomic evaluation of gymnosperm pollination drop proteins indicates highly conserved and complex biological functions. Sex Plant Reprod 20:181–189

    Article  CAS  Google Scholar 

  • Weston RJ (2000) The contribution of catalase and other natural products to the antibacterial activity of honey: a review. Food Chem 71:235–239

    Article  CAS  Google Scholar 

  • Zha HG, Milne RI, Sun H (2010) Asymmetric hybridization in Rhododendron agastum: a hybrid taxon comprising mainly F1 s in Yunnan, China. Ann Bot 105:89–100

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. Bernard Henrissat (CNRS) for his suggestions and critical reading of the manuscript. This study was supported by National Science Foundation of China (Grant No. 31170216 to HG Zha) and Major Program of National Natural Science Foundation of China (Grant No. 31590823 to Hang Sun).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Guang Zha.

Ethics declarations

Conflict of interest

The authors have declared that no competing interests exist.

Ethical statement

Our work complies to the ethical rules applicable for this journal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. S1

MS spectra of identified proteins and fragments. a Rhchi2 MS spectra. b MS/MS spectra of m/z 1451.65, “GFYTYEAFI(L)AAAK” fragment in Rhchi2. c MS/MS spectra of m/z 2642.2, “TAL(I)WFWMTPQSPKPSSHDVITGR” fragment in Rhchi2. d Rhchi3 MS spectra. e MS/MS spectra of m/z 1110.5, “YGGI(L)ML(I)WDR” fragment in Rhchi3. f MS/MS spectra of m/z 1526.77, “I(L)VNL(I)GFL(I)SAFGNFK” fragment in Rhchi3 (TIFF 2255 kb)

Supplementary Fig. S2

Comparison of Rhchi2 amino acid sequence with that of six class II plant chitinase homologues. Amino acids, which are completely conserved are marked with asterisks, and the highly conserved amino acids are marked with dots or double dots. -, gap left to improve alignment. Numbers refer to amino acid residues at the end of the respective lines. Species names are abbreviated at the left and represent with accession number: Zmchi2 (Zea mays, B6SZC6), Gmchi2 (Glycine max, C6TNB0), Ntchi2 (Nicotiana tabacum, Q9ZWS3), Vvchi2 (Vitis vinifera, A5AT00), Qschi2 (Oryza sativa, Q7XCK6), Ghchi2 (Gossypium hirsutum, P931545) (DOC 105 kb)

Supplementary Fig. S3

Comparison of Rhchi3 amino acid sequence with that of six class III plant chitinase homologues. Amino acids, which are completely conserved are marked with asterisks, and the highly conserved amino acids are marked with dots or double dots. -, gap left to improve alignment. Numbers refer to amino acid residues at the end of the respective lines. Species names are abbreviated at the left and represent an accession number: Zmchi3 (Zea mays, B4G1T3), Gmchi3 (Glycine max, C6T8G2), Ntchi3 (Nicotiana tabacum, P29061), Vvchi3 (Vitis vinifera, Q84S31), Qschi3 (Oryza sativa, Q84ZH2), Ghchi3 (Gossypium hirsutum, A2TJX5) (DOC 110 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zha, HG., Milne, R.I., Zhou, HX. et al. Identification and cloning of class II and III chitinases from alkaline floral nectar of Rhododendron irroratum, Ericaceae. Planta 244, 805–818 (2016). https://doi.org/10.1007/s00425-016-2546-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-016-2546-y

Keywords

Navigation