Skip to main content
Log in

Chlorophyll fluorescence imaging as a tool to monitor the progress of a root pathogen in a perennial plant

  • Emerging Technologies
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

The chlorophyll fluorescence parameter Φ NO is an excellent metric for the non-destructive monitoring of disease progression, measured over a broad range of light intensities.

The suitability of the slow induction chlorophyll fluorescence parameters Φ PSII, Φ NPQ, and Φ NO to monitor in vivo disease progression in a host-root pathogen pathosystem was evaluated and compared to the established method of monitoring disease by measuring F v /F m . Using the infection of ginseng plants (Panax quinquefolius L.) with Pythium irregulare Buisman as a model, light response curves were used to establish the optimal irradiance for the resolution of differences between fluorescence parameters Φ PSII, Φ NPQ and Φ NO. As infection progressed only changes in Φ NO remained consistent with increased irradiance, and increased as infection progressed. Furthermore, Φ NO showed a high sensitivity for distinguishing increased disease load. In contrast, the magnitude in change of Φ PSII and Φ NPQ were sensitive to irradiance levels. The magnitude of increase in Φ NO per unit disease score was equivalent to the corresponding decline in F v /F m values. Thus Φ NO is as sensitive as F v /F m in monitoring biotic stress. The ability to measure Φ NO under a wide range of light intensities, including natural light, potentially without the need for dark adaptation, means that it can be used in the development of a general protocol for non-invasive, in vivo monitoring of plant health, from the laboratory to the field scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aldea M, Hamilton JG, Resti JP, Zanger AR, Berenbaum MR, DeLucia EH (2005) Indirect effects of insect herbivory on leaf gas exchange in soybean. Plant Cell Environ 28:402–411

    Article  Google Scholar 

  • Aldea M, Frank TD, DeLucia EH (2006) A method for quantitative analysis of spatially variable physiological processes across leaf surfaces. Photosynth Res 90:161–172

    Article  PubMed  CAS  Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113

    Article  PubMed  CAS  Google Scholar 

  • Baker NR, Oxborough K, Lawson T, Morison JIL (2001) High resolution imaging of photosynthetic activities of tissues, cells and chloroplasts in leaves. J Exp Bot 52:615–621

    Article  PubMed  CAS  Google Scholar 

  • Balachandran S, Osmond CB, Daley PF (1994) Diagnosis of the earliest strain-specific interactions between tobacco mosaic virus and chloroplasts of tobacco leaves in vivo by means of chlorophyll fluorescence imaging. Plant Physiol 104:1059–1065

    PubMed  PubMed Central  CAS  Google Scholar 

  • Berger S, Benediktyová Z, Matouš K, Bonfig K, Mueller MJ, Nedbal L, Roitsch T (2007) Visualization of dynamics of plant–pathogen interaction by novel combination of chlorophyll fluorescence imaging and statistical analysis: differential effects of virulent and avirulent strains of P. syringae and of oxylipins on A. thaliana. J Exp Bot 58:797–806

    Article  PubMed  CAS  Google Scholar 

  • Bock CH, Poole GH, Parker PE, Gottwald TR (2010) Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging. Crit Rev Plant Sci 29:59–107

    Article  Google Scholar 

  • Bonfig KB, Schreiber U, Gabler A, Roitsch T, Berger S (2006) Infection with virulent and avirulent P. syringae strains differentially affects photosynthesis and sink metabolism in Arabidopsis leaves. Planta 225:1–12

    Article  PubMed  CAS  Google Scholar 

  • Bürling K, Hunsche M, Noga G (2010) Quantum yield of non-regulated energy dissipation in PSII (Y(NO)) for early detection of leaf rust (Puccina triticina) infection in susceptible and resistant wheat (Triticum aestivum L.) cultivars. Prec Agric 11:703–716

    Article  Google Scholar 

  • Calatayud A, Roca D, Martínez PF (2006) Spatial–temporal variations in rose leaves under water stress conditions studied by chlorophyll fluorescence imaging. Plant Physiol Biochem 44:564–573

    Article  PubMed  CAS  Google Scholar 

  • Chaerle L, Van Der Straeten D (2001) Seeing is believing: imaging techniques to monitor plant health. Biochim Biophys Acta 1519:153–166

    Article  PubMed  CAS  Google Scholar 

  • Chaerle L, Hagenbeek D, De Bruyne E, Valcke R, Van Der Straeten D (2004) Thermal and chlorophyll-fluorescence imaging distinguish plant–pathogen interactions at an early stage. Plant Cell Physiol 45:887–896

    Article  PubMed  CAS  Google Scholar 

  • Chaerle L, Pineda M, Romero-Aranda R, Van Der Straeten D, Baron M (2006) Robotized thermal and chlorophyll fluorescence imaging of pepper mild mottle virus infection in Nicotiana benthamiana. Plant Cell Physiol 47:1323–1336

    Article  PubMed  CAS  Google Scholar 

  • Chaerle L, Leinonen I, Jones HG, Van Der Straeten D (2007) Monitoring and screening plant populations with combined thermal and chlorophyll fluorescence imaging. J Exp Bot 58:773–784

    Article  PubMed  CAS  Google Scholar 

  • Chen P, Frank TD, Long SP (2009) Is a short, sharp shock equivalent to long-term punishment? Contrasting the spatial patter of acute and chronic ozone damage to soybean leaves via chlorophyll fluorescence imaging. Plant Cell Environ 32:327–335

    Article  PubMed  CAS  Google Scholar 

  • Christen D, Schönmann S, Jermini M, Strasser RJ, Défago G (2007) Characterization and early detection of grapevine (Vitis vinifera) stress responses to esca disease by in situ chlorophyll fluorescence and comparison with drought stress. Environ Exp Bot 60:504–514

    Article  CAS  Google Scholar 

  • Demmig-Adams B, Adams WW III, Barker DH, Logan BA, Bowling RD, Verhoeven AS (1996) Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiol Plant 98:253–264

    Article  CAS  Google Scholar 

  • Emmett RW, Parbery DG (1975) Appressoria. Annu Rev Phytopathol 13:147–165

    Article  Google Scholar 

  • Genty B, Briantais J-M, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    Article  CAS  Google Scholar 

  • Genty B, Harbinson J, Cailly AL, Rizza F (1996) Fate of excitation at PSII in leaves: the non-photochemical side. Presented at the third BBSRC Robert Hill symposium on photosynthesis, March 31 to April 3, 1996, University of Sheffield, Department of Molecular Biology and Biotechnology, Western Bank, Sheffield UK, Abstract no. P28

  • Gorbe E, Calatayud A (2012) Applications of chlorophyll fluorescence imaging technique in horticultural research: a review. Sci Hort 138:24–35

    Article  CAS  Google Scholar 

  • Govindjee (1995) Sixty-three years since Kautsky: chlorophyll a fluorescence. Aust J Plant Physiol 22:20–29

    Article  Google Scholar 

  • Grieu P, Rubin C, Guckert A (1995) Effect of drought on photosynthesis in Trifolium repens: maintenance of photosystem II efficiency and of measured photosynthesis. Plant Physiol Biochem 33:19–24

    CAS  Google Scholar 

  • Guidi L, Mori S, Degl’Innocenti E, Pecchia S (2007) Effects of ozone exposure or fungal pathogen on white lupin leaves as determined by imaging of chlorophyll a fluorescence. Plant Physiol Biochem 45:851–857

    Article  PubMed  CAS  Google Scholar 

  • Halleen F, Fourie PH, Crous PW (2007) Control of black foot disease in grapevine nurseries. Plant Pathol 56:637–645

    Article  CAS  Google Scholar 

  • Hendrix FF, Campbell WA (1973) Pythiums as plant pathogens. Annu Rev Phytopathol 11:77–98

    Article  Google Scholar 

  • Horton P, Ruba A, Walters RG (1996) Regulation of light harvesting in green plants. Annu Rev Plant Physiol Plant Mol Biol 47:655–684

    Article  PubMed  CAS  Google Scholar 

  • Iqbal MJ, Goodwin PH, Leonardos ED, Grodzinski B (2012) Spatial and temporal changes in chlorophyll fluorescence images of Nicotiana benthamiana leaves following inoculation with Pseudomonas syringae pv. tabaci. Plant Pathol 61:1052–1062

    Article  CAS  Google Scholar 

  • Ivanov DA, Bernards MA (2012) Ginsenosidases and the pathogenicity of Pythium irregulare. Phytochemistry 78:44–53

    Article  PubMed  CAS  Google Scholar 

  • Klughammer C, Schreiber U (2008) Complimentary PSII quantum yields calculated from simple chlorophyll fluorescence parameters measured by PAM fluorometry and the saturation pulse method. PAM Appl Notes 1:27–35

    Google Scholar 

  • Kramer DM, Johnson G, Kiirats O, Edwards GE (2004) New fluorescence parameters for determination of QA redox state and excitation energy fluxes. Photosynth Res 79:209–218

    Article  PubMed  CAS  Google Scholar 

  • Kuckenberg J, Tartachnyk I, Schmitz-Eiberger M, Noga GJ (2007) UV-B induced damage and recovery processes in apple leaves as assessed by LIF and PAM fluorescence techniques. J Appl Bot Food Qual 81:77–85

    CAS  Google Scholar 

  • Leipner J, Oxborough K, Baker NR (2001) Primary sites of ozone-induced perturbations of photosynthesis in leaves: identification and characterization in Phaseolus vulgaris using high resolution chlorophyll fluorescence imaging. J Exp Bot 52:1689–1696

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler HK, Miehé J (1997) Fluorescence imaging as a diagnostic tool for plant stress. Trends Plant Sci 2:316–320

    Article  Google Scholar 

  • Lichtenthaler HK, Buschmann C, Knapp M (2005a) How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio RFd of leaves with the PAM fluorometer. Photosynthetica 43:375–393

    Google Scholar 

  • Lichtenthaler HK, Langsdorf G, Lenk S, Buschmann C (2005b) Chlorophyll fluorescence imaging of photosynthetic activity with the flash-lamp fluorescence imaging system. Photosynthetica 43:355–369

    Article  CAS  Google Scholar 

  • Martin FN, Loper JE (1999) Soilborne plant diseases caused by Pythium spp.: ecology, epidemiology, and prospects for biological control. Crit Rev Plant Sci 18:111–181

    Article  CAS  Google Scholar 

  • Matouš K, Benediktyová Z, Berger S, Roitsch T, Nedbal L (2006) Case study of combinatorial imaging: what protocol and what chlorophyll fluorescence image to use when visualizing infection of Arabidopsis thaliana by Pseudomonas syringae. Photosynth Res 90:243–253

    Article  PubMed  CAS  Google Scholar 

  • Mazzola M (1998) Elucidation of the microbial complex having a causal role in the development of apple replant disease in Washington. Phytopathology 88:930–938

    Article  PubMed  CAS  Google Scholar 

  • Meyer S, Saccardy-Adji K, Rizza F, Genty B (2001) Inhibition of photosynthesis by Colletotrichum lindemuthianum in bean leaves determined by chlorophyll fluorescence imaging. Plant Cell Environ 24:947–955

    Article  CAS  Google Scholar 

  • Miyake N, Nagai H, Kageyama K (2014) Wilt and root rot of poinsettia caused by three high-temperature-tolerant Pythium species in ebb-and-flow irrigation systems. J Gen Plant Pathol 80:479–489

    Article  Google Scholar 

  • Mutka MA, Bart RS (2015) Image-based phenotyping of plant disease symptoms. Front Plant Sci 5:734. doi:10.3389/fpls.2014.00734

    Article  PubMed  PubMed Central  Google Scholar 

  • Oliver A, Van Lierop B, Buonassisi A (1990) American ginseng culture in the arid climates of British Columbia. Ministry of Agriculture and Fisheries of British Columbia. Victoria, BC, Canada, pp 37

  • Oxborough K, Baker NR (1997) An instrument capable of imaging chlorophyll a fluorescence from intact leaves at very low irradiance and at cellular and subcellular levels of organization. Plant Cell Environ 20:1473–1483

    Article  Google Scholar 

  • Pérez-Bueno ML, Ciscato M, van de Ven M, García-Luque I, Valcke R, Barón M (2006) Imaging viral infection: studies on Nicotiana benthamiana plants infected with the pepper mild mottle tobamovirus. Photosynth Res 90:111–123

    Article  PubMed  CAS  Google Scholar 

  • Pineda M, Soukupová J, Matouš K, Nedbal L, Barón M (2008) Conventional and combinatorial chlorophyll fluorescence imaging of tobamovirus-infected plants. Photosynthetica 46:441–451

    Article  CAS  Google Scholar 

  • Prokopová J, Špundová M, Sedlářová M, Husičková A, Novotný R, Doležal K, Lebeda A (2010) Photosynthetic responses of lettuce to downy mildew infection and cytokinin treatment. Plant Physiol Biochem 48:716–723

    Article  PubMed  CAS  Google Scholar 

  • Reeleder RD, Brammall RA (1994) Pathogenicity of Pythium species, Cylindrocarpon destructans and Rhizoctonia solani to ginseng seedlings in Ontario. Can J Plant Pathol 16:311–316

    Article  Google Scholar 

  • Rodriguez-Moreno L, Pineda M, Soukupova J, Macho AP, Beuzon CR, Baron M, Ramos C (2008) Early detection of bean infection by Pseudomonas syringae in asymptomatic leaf areas using chlorophyll fluorescence imaging. Photosynth Res 96:27–35

    Article  PubMed  CAS  Google Scholar 

  • Rolfe SA, Scholes JD (2010) Chlorophyll fluorescence imaging of plant–pathogen interactions. Protoplasma 247:163–175

    Article  PubMed  CAS  Google Scholar 

  • Scharte J, Schön H, Weis E (2005) Photosynthesis and carbohydrate metabolism in tobacco leaves during an incompatible interaction with Phytophthora nicotianae. Plant Cell Environ 28:1421–1435

    Article  CAS  Google Scholar 

  • Scholes JD, Rolfe SA (1996) Photosynthesis in localised regions of oat leaves infected with crown rust (Puccinia coronata): quantitative imaging of chlorophyll fluorescence. Planta 199:573–582

    Article  CAS  Google Scholar 

  • Schreiber U, Klughammer C (2008) Non-photochemical fluorescence quenching and quantum yields in PSI and PSII: analysis of heat-induced limitations using Maxi-Imaging-PAM and Dual-PAM-100. PAM Appl Notes 1:15–18

    Google Scholar 

  • Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res 10:51–62

    Article  PubMed  CAS  Google Scholar 

  • Strange RN, Scott PR (2005) Plant disease: a threat to global food security. Annu Rev Phytopathol 43:83–116

    Article  PubMed  CAS  Google Scholar 

  • Swarbrick PJ, Schulze-Lefert P, Scholes JD (2006) Metabolic consequences of susceptibility and resistance (race-specific and broad-spectrum) in barley leaves challenged with powdery mildew. Plant Cell Environ 29:1061–1076

    Article  PubMed  CAS  Google Scholar 

  • Takayama K, Sakai Y, Nishina H, Omasa K (2007) Chlorophyll fluorescence imaging at 77 K for assessing the heterogeneously distributed light stress over a leaf surface. Environ Contr Biol 45:39–46

    Article  CAS  Google Scholar 

  • Tuite J (1969) Plant pathological methods. Burgess, Minneapolis

    Google Scholar 

  • Tung J, Goodwin PH, Hsiang T (2013) Chlorophyll fluorescence for quantification of fungal foliar infection and assessment of the effectiveness of an induced systemic resistance activator. Eur J Plant Pathol 136:301–315

    Article  CAS  Google Scholar 

  • van Kooten O, Snel J (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth Res 25:147–150

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Mr. Jeffrey Rice of J.C.K. Farms Ltd. (Brantford, Ontario, Canada) for providing ginseng seed and Damaree Farms (Delhi, Ontario, Canada) for providing ginseng roots. This work was supported by a Post-Graduate Scholarship from the Natural Sciences and Engineering Research Council (NSERC) of Canada to D.A.I., and a NSERC Discovery Grant to M.A.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Bernards.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, D.A., Bernards, M.A. Chlorophyll fluorescence imaging as a tool to monitor the progress of a root pathogen in a perennial plant. Planta 243, 263–279 (2016). https://doi.org/10.1007/s00425-015-2427-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-015-2427-9

Keywords

Navigation