Skip to main content
Log in

Narciclasine, a potential allelochemical, affects subcellular trafficking of auxin transporter proteins and actin cytoskeleton dynamics in Arabidopsis roots

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

The present study documented the action of a potential allelochemical, narciclasine, on auxin transport in Arabidopsis by mainly affecting subcellular trafficking of PIN and AUX1 proteins and through interfering actin cytoskeletal organization.

Narciclasine (NCS), an Amaryllidaceae alkaloid isolated from Narcissus tazetta bulbs, has potential allelopathic activity and affects auxin transport. However, little is known about the cellular mechanism of this inhibitory effect of NCS on auxin transport. The present study characterizes the effects of NCS at the cellular level using transgenic Arabidopsis plants harboring the promoters of PIN, in combination with PIN-GFP proteins or AUX1-YFP fusions. NCS treatment caused significant reduction in the abundance of PIN and AUX1 proteins at the plasma membrane (PM). Analysis of the subcellular distribution of PIN and AUX1 proteins in roots revealed that NCS induced the intracellular accumulation of auxin transporters, including PIN2, PIN3, PIN4, PIN7 and AUX1. However, other PM proteins, such as PIP2, BRI1, and low temperature inducible protein 6b (LTI6b), were insensitive to NCS treatment. NCS-induced PIN2 compartments were further defined using endocytic tracer FM 4-64 labeled early endosomes and suggested that this compound affects the endocytosis trafficking of PIN proteins. Furthermore, pharmacological analysis indicated that the brefeldin A (BFA)-insensitive pathway is employed in the cellular effects of NCS on PIN2 trafficking. Although NCS did not alter actin dynamics in vitro, it resulted in the depolymerization of the actin cytoskeleton in vivo. This disruption of actin filaments by NCS subsequently influences the actin-based vesicle motility. Hence, the elucidation of the specific role of NCS is useful for further understanding the mechanisms of allelopathy at the phytohormone levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ARF:

ADP-ribosylation factor family of GTP-binding proteins

AUX1/LAX:

AUXIN RESISTANT1/LIKE AUXIN RESISTANT

BFA:

Brefeldin A

eEF1A:

Elongation factor one alpha

GEF:

Guanine nucleotide exchange factor

LatB:

Latrunculin B

NCS:

Narciclasine

PIN:

PIN-FORMED auxin efflux carrier protein

PM:

Plasma membrane

TIBA:

2,3,5-Triiodobenzoic acid

TryA23:

Tyrphostin A23

References

  • Axelos M, Bardet C, Liboz T, Le Van Thai A, Curie C et al (1989) The gene family encoding the Arabidopsis thaliana translation elongation factor ef-1 alpha: molecular cloning, characterization and expression. Mol Gen Genet 219:106–112

    Article  CAS  PubMed  Google Scholar 

  • Bais HP, Vepachedu R, Gilroy S, Callaway RM, Vivanco JM (2003) Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science 301:1377–1380

    Article  CAS  PubMed  Google Scholar 

  • Bannigan A, Wiedemeier AM, Williamson RE, Overall RL, Baskin TI (2006) Cortical microtubule arrays lose uniform alignment between cells and are oryzalin resistant in the Arabidopsis mutant, radially swollen 6. Plant Cell Physiol 47:949–958

    Article  CAS  PubMed  Google Scholar 

  • Bastida J, Lavilla R, Viladomat F (2006) Chemical and biological aspects of Narcissus alkaloids. Alkaloids Chem Biol 63:87–179

    Article  CAS  PubMed  Google Scholar 

  • Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertová D et al (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602

    Article  PubMed  Google Scholar 

  • Berkov S, Bastida J, Sidjimova B, Viladomat F, Codina C (2008) Phytochemical differentiation of Galanthus nivalis and Galanthus elwesii (Amaryllidaceae): a case study. Biochem Syst Ecol 36:638–645

    Article  CAS  Google Scholar 

  • Bertin C, Yang XH, Weston LA (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256:67–83

    Article  CAS  Google Scholar 

  • Bi YR, Yung KH, Wong YH (1998) Physiological effects of narciclasine from the mucilage of Narcissus tazetta L. bulbs. Plant Sci 135:103–108

    Article  CAS  Google Scholar 

  • Bi YR, Zhang LX, Guo JK, Yung KH, Wong YS (2003) Narciclasine alters chloroplast membrane structure and inhibits 5-aminolevulinic acid and chlorophyll binding protein accumulation in wheat (Triticum aestivum) leaves. N Z J Crop Hortic Sci 31:335–343

    Article  CAS  Google Scholar 

  • Blakeslee JJ, Bandyopadhyay A, Lee OR, Mravec J, Titapiwatanakun B et al (2007) Interactions among PIN-FORMED and P-glycoprotein auxin transporters in Arabidopsis. Plant Cell 19:131–147

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blum U (2005) Relationships between phenolic acid concentrations, transpiration, water utilization, leaf area expansion, and uptake of phenolic acids: nutrient culture studies. J Chem Ecol 31:1907–1932

    Article  CAS  PubMed  Google Scholar 

  • Bolte S, Talbot C, Boutte Y, CatriceO Read ND et al (2004) Fm-dyes as experimental probes for dissecting vesicle trafficking in living plant cells. J Microsc 214:159–173

    Article  CAS  PubMed  Google Scholar 

  • Ceriotti G (1967) Narciclasine: an antimitotic substance from narcissus bulbs. Nature 213:595–596

    Article  CAS  PubMed  Google Scholar 

  • Cutler SR, Ehrhardt DW, Griffitts JS, Somerville CR (2000) Random GFP:cDNA fusions enable visualization of subcellular structures in cells of Arabidopsis at a high frequency. Proc Nat Acad Sci USA 97:3718–3723

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dettmer J, Hong-Hermesdorf A, Stierhof YD, Schumacher K (2006) Vacuolar H+-ATPase activity is required for endocytic and secretory trafficking in Arabidopsis. Plant Cell 18:715–730

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dhonukshe P, Aniento F, Hwang I, Robinson D, Mravec J et al (2007) Clathrin-mediated constitutive endocytosis of PIN auxin efflux carriers in Arabidopsis. Curr Biol 17:520–527

    Article  CAS  PubMed  Google Scholar 

  • Dhonukshe P, Grigoriev I, Fischer R, Tominaga M, Robinson DG et al (2008a) Auxin transport inhibitors impair vesicle motility and actin cytoskeleton dynamics in diverse eukaryotes. Proc Nat Acad Sci USA 105:4489–4494

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dhonukshe P, Tanaka H, Goh T, Ebine K, Mähönen AP et al (2008b) Generation of cell polarity in plants links endocytosis, auxin distribution and cell fate decisions. Nature 456:962–966

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ding L, Qi L, Jing H, Li J, Wang W et al (2008) Phytotoxic effects of leukamenin E (an ent-kaurene diterpenoid) on root growth and root hair development in Lactuca sativa L. seedlings. J Chem Ecol 34:1492–1500

    Article  CAS  PubMed  Google Scholar 

  • Essl D, Dirnberger D, Gomord V, Strasser R, Faye L et al (1999) The N-terminal 77 amino acids from tobacco N-acetylglucosaminyltransferase I are sufficient to retain a reporter protein in the Golgi apparatus of Nicotiana benthamiana cells. FEBS Lett 453:169–173

    Article  CAS  PubMed  Google Scholar 

  • Friml J, Wiśniewska J, Benková E, Mendgen K, Palme K (2002) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415:806–809

    Article  PubMed  Google Scholar 

  • Gabrielsen B, Monath TP, Huggins JW, Kefauver DF, Pettit GR et al (1992) Antiviral (RNA) activity of selected Amaryllidaceae isoquinoline constituents and synthesis of related substances. J Nat Prod 55:1569–1581

    Article  CAS  PubMed  Google Scholar 

  • Geldner N, Friml J, Stierhof YD, Jürgens G, Palme K (2001) Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413:425–428

    Article  CAS  PubMed  Google Scholar 

  • Geldner N, Anders N, Wolters H, Keicher J, Kornberger W et al (2003) The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112:219–230

    Article  CAS  PubMed  Google Scholar 

  • Geldner N, Hyman DL, Wang X, Schumacher K, Chory J (2007) Endosomal signaling of plant steroid receptor kinase BRI1. Genes Dev 21:1598–1602

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Graña E, Sotelo T, Díaz-Tielas C, Araniti F, Krasuska U et al (2013) Citral inducesauxin and ethylene-mediated malformations and arrests cell division in Arabidopsis thaliana roots. J Chem Ecol 39:271–282

    Article  PubMed  Google Scholar 

  • Grieneisen VA, Xu J, Marée AF, Hogeweg P, Scheres B (2007) Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature 449:1008–1013

    Article  CAS  PubMed  Google Scholar 

  • Horiuchi J, Badri DV, Kimball BA, Negre F, Dudareva N, Paschke MW, Vivanco JM (2007) The floral volatile, methyl benzoate, from snapdragon (Antirrhinum majus) triggers phytotoxic effects in Arabidopsis thaliana. Planta 226:1–10

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Yang L, Na X, You J, Hu W et al (2012) Narciclasine inhibits the responses of Arabidopsis roots to auxin. Planta 236:597–612

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Li J, Yang L, Nan W, Cao X et al (2014) Narciclasine inhibition of root growth is caused by DNA damage-induced cell cycle arrest in lettuce seedlings. Protoplasma 251:1113–1124

    Article  CAS  PubMed  Google Scholar 

  • Hussey PJ, Ketelaar T, Deeks MJ (2006) Control of the actin cytoskeleton in plant cell growth. Annu Rev Plant Biol 57:109–125

    Article  CAS  PubMed  Google Scholar 

  • Inderjit, Duke SO (2003) Ecophysiological aspect of allelopathy. Planta 217:529–539

    Article  CAS  PubMed  Google Scholar 

  • Jaillais Y, Fobis-Loisy I, Miege C, Rollin C, Gaude T (2006) AtSNX1 defines an endosome for auxin-carrier trafficking in Arabidopsis. Nature 443:106–109

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Park M, Kim SJ, Hwang I (2005) Actin filaments play a critical role in vacuolar trafficking at the Golgi complex in plant cells. Plant Cell 17:888–902

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kleine-Vehn J, Dhonukshe P, Swarup R, Bennett M, Friml J (2006) Anovel pathway for subcellular trafficking of AUX1 auxin influx carrier. Plant Cell 18:3171–3181

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kleine-Vehn J, Dhonukshe P, Sauer M, Brewer P, Wiśniewska J et al (2008) ARF-GEF-dependent transcytosis mechanism for polar delivery of PIN auxin carriers in Arabidopsis. Curr Biol 18:526–531

    Article  CAS  PubMed  Google Scholar 

  • Kornienko A, Evidente A (2008) Chemistry, biology, and medicinal potential of narciclasine and its congeners. Chem Rev 108:1982–2014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kurup S, Runions J, Kohler U, Laplaze L, Hodge S et al (2005) Marking cell lineages in living tissues. Plant J 42:444–453

    Article  CAS  PubMed  Google Scholar 

  • Lallemand S, Kaps M, Einhellig F (2009) Applied allelopathy: effects of Daffodils on other species in sustainable agriculture and the home landscape. Hortscience 44:1164

    Google Scholar 

  • Lefranc F, Sauvage S, Van Goietsenoven G, Mégalizzi V, Lamoral-Theys D et al (2009) Narciclasine, a plant growth modulator, activates Rho and stress fibers in glioblastoma cells. Mol Cancer Ther 8:1739–1750

    Article  CAS  PubMed  Google Scholar 

  • Mullin RD, Machesky LM (2000) Actin assembly mediated by Arp2/3 complex and WASP family proteins. Methods Enzymol 325:214–237

    Article  Google Scholar 

  • Na X, Hu Y, Yue K, Lu H, Jia P et al (2011a) Concentration-dependent effects of narciclasine on cell cycle progression in Arabidopsis root tips. BMC Plant Biol 11:184

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Na X, Hu Y, Yue K, Lu H, Jia P et al (2011b) Narciclasine modulates polar auxin transport in Arabidopsis roots. J Plant Physiol 168:1149–1156

    Article  CAS  PubMed  Google Scholar 

  • Naramoto S, Otegui MS, Kutsuna N, de Rycke R, Dainobu T, Karampelias M, Fujimoto M, Feraru E, Miki D, Fukuda H, Nakano A, Friml J (2014) Insights into the localization and function of the membrane trafficking regulator GNOM ARF-GEF at the Golgi apparatus in Arabidopsis. Plant Cell 26:3062–3076

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nishimura T, Matano N, Morishima T, Kakinuma C, Hayashi K et al (2012) Identification of IAA transport inhibitors including compounds affecting cellular PIN trafficking by two chemical screening approaches using maize coleoptile systems. Plant Cell Physiol 53:1671–1682

    Article  CAS  PubMed  Google Scholar 

  • Ortiz-Zapater E, Soriano-Ortega E, Marcote MJ, Ortiz-Masiá D, Aniento F (2006) Trafficking of the human transferrin receptor in plant cells: effects of tyrphostin A23 and brefeldin A. Plant J 48:757–770

    Article  CAS  PubMed  Google Scholar 

  • Paciorek T, Zazímalová E, Ruthardt N, Petrásek J, Stierhof YD et al (2005) Auxin inhibits endocytosis and promotes its own efflux from cells. Nature 435:1251–1256

    Article  CAS  PubMed  Google Scholar 

  • Piozzi F, Marino ML, Fuganti C, Martino AD (1969) Occurrence of non-basic metabolites in Amaryllidaceae. Phytochemistry 8:1745–1748

    Article  CAS  Google Scholar 

  • Rahman A, Bannigan A, Sulaman W, Pechter P, Blancaflor EB et al (2007) Auxin, actin and growth of the Arabidopsis thaliana primary root. Plant J 50:514–528

    Article  CAS  PubMed  Google Scholar 

  • Robert S, Chary SN, Drakakaki G, Li S, Yang Z et al (2008) Endosidin1 defines a compartment involved in endocytosis of the brassinosteroid receptor BRI1 and the auxin transporters PIN2 and AUX1. Proc Nat Acad Sci USA 105:8464–8469

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Soltys D, Rudzińska-Langwald A, Gniazdowska A, Wiśniewska A, Bogatek R (2012) Inhibition of tomato (Solanum lycopersicum L.) root growth by cyanamide is due to altered cell division, phytohormone balance and expansin gene expression. Planta 236:1629–1638

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Swarup R, Kargul J, Marchant A, Zadik D, Rahman A et al (2004) Structure-function analysis of the presumptive Arabidopsis auxin permease AUX1. Plant Cell 16:3069–3083

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Titapiwatanakun B, Murphy AS (2009) Post-transcriptional regulation of auxin transport proteins: cellular trafficking, protein phosphorylation, protein maturation, ubiquitination, and membrane composition. J Exp Bot 60:1093–1107

    Article  CAS  PubMed  Google Scholar 

  • Ueda T, Yamaguch M, Uchimiya H, Nakano A (2001) Ara6, a plant-unique novel tyype Rab GTPpase, functions in the endocytic pathway of Arabidopsis thaliana. EMBO J 20:4370–4741

    Article  Google Scholar 

  • Van Goietsenoven G, Mathieu V, Lefranc F, Kornienko A, Evidente A et al (2012) Narciclasine as well as other Amaryllidaceae isocarbostyrils are promising GTP-ase targeting agents against brain cancers. Med Res Rev 33:439–455

    Article  PubMed  Google Scholar 

  • Wang YS, Yoo CM, Blancaflor EB (2008) Improved imaging of actin filaments in transgenic Arabidopsis plants expressing a green fluorescent protein fusion to the C- and N-termini of the fimbrin actinbinding domain 2. New Phytol 177:525–536

    CAS  PubMed  Google Scholar 

  • Weir TL, Park SW, Vivanco JM (2004) Biochemical and physiological mechanisms mediated by allelochemicals. Curr Opin Plant Biol 7:472–479

    Article  CAS  PubMed  Google Scholar 

  • Weston LA, Mathesius U (2013) Flavonoids: their structure, biosynthesis and role in the rhizosphere, including allelopathy. J Chem Ecol 39:283–297

    Article  CAS  PubMed  Google Scholar 

  • Wisniewska J, Xu J, Seifertová D, Brewer PB, Ruzicka K et al (2006) Polar PIN localization directs auxin flow in plants. Science 312:883

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Scheres B (2005) Dissection of Arabidopsis ADP-RIBOSYLATIONFACTOR1 function in epidermal cell polarity. Plant Cell 17:525–536

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zupkó I, Réthy B, Hohmann J, Molnár J, Ocsovszki I et al (2009) Antitumor activity of alkaloids derived from Amaryllidaceae species. In Vivo 23:41–48

    PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (31201145, 31170225), the Foundation of Science and Technology Program of Gansu Province (1208RJZA224), and Fundamental Research Funds for the Central Universities (lzujbky-2014-95, lzujbky-2013-bt05; lzujbky-2012-104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yurong Bi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 13922 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Na, X., Li, J. et al. Narciclasine, a potential allelochemical, affects subcellular trafficking of auxin transporter proteins and actin cytoskeleton dynamics in Arabidopsis roots. Planta 242, 1349–1360 (2015). https://doi.org/10.1007/s00425-015-2373-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-015-2373-6

Keywords

Navigation