Skip to main content
Log in

Insights into the multifaceted application of microscopic techniques in plant tissue culture systems

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Microscopic techniques remain an integral tool which has allowed for the better understanding and manipulation of in vitro plant culture systems. The recent advancements will inevitably help to unlock the long-standing mysteries of fundamental biological mechanisms of plant cells.

Beyond the classical applications in micropropagation aimed at the conservation of endangered and elite commercial genotypes, plant cell, tissue and organ cultures have become a platform for elucidating a myriad of fundamental physiological and developmental processes. In conjunction with microscopic techniques, in vitro culture technology has been at the centre of important breakthroughs in plant growth and development. Applications of microscopy and plant tissue culture have included elucidation of growth and development processes, detection of in vitro-induced physiological disorders as well as subcellular localization using fluorescent protein probes. Light and electron microscopy have been widely used in confirming the bipolarity of somatic embryos during somatic embryogenesis. The technique highlights basic anatomical, structural and histological evidence for in vitro-induced physiological disorders during plant growth and development. In this review, we discuss some significant biological insights in plant growth and development, breakthroughs and limitations of various microscopic applications and the exciting possibilities offered by emergent in vivo live imaging and fluorescent protein engineering technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ascough GD, Novák O, Pěnčík A, Rolčík J, Strnad M, Erwin JE, Van Staden J (2009) Hormonal and cell division analyses in Watsonia lepida seedlings. J Plant Physiol 166:1497–1507

    Article  CAS  PubMed  Google Scholar 

  • Bairu MW, Kane ME (2011) Physiological and developmental problems encountered by in vitro cultured plants. Plant Growth Regul 63:101–103

    Article  CAS  Google Scholar 

  • Bairu MW, Stirk WA, Van Staden J (2009) Factors contributing to in vitro shoot-tip necrosis and their physiological interactions. Plant Cell Tissue Organ Cult 98:239–248

    Article  Google Scholar 

  • Bairu MW, Aremu AO, Van Staden J (2011) Somaclonal variation in plants: causes and detection methods. Plant Growth Regul 63:147–173

    Article  CAS  Google Scholar 

  • Bird DA, Buruiana MM, Zhou Y, Fowke LC, Wang H (2007) Arabidopsis cyclin-dependent kinase inhibitors are nuclear-localized and show different localization patterns within the nucleoplasm. Plant Cell Rep 26:861–872

    Article  CAS  PubMed  Google Scholar 

  • Blazquez S, Olmos E, Hernández JA, Fernández-García N, Fernández JA, Piqueras A (2009) Somatic embryogenesis in saffron (Crocus sativus L.). Histological differentiation and implication of some components of the antioxidant enzymatic system. Plant Cell Tissue Organ Cult 97:49–57

    Article  CAS  Google Scholar 

  • Boevink P, Oparka K, Cruz SS, Martin B, Betteridge A, Hawes C (1998) Stacks on tracks: the plant Golgi apparatus traffics on an actin/ER network. Plant J 15:441–447

    Article  CAS  PubMed  Google Scholar 

  • Bouchabké-Coussa O, Obellianne M, Linderme D, Montes E, Maia-Grondard A, Vilaine F, Pannetier C (2013) Wuschel overexpression promotes somatic embryogenesis and induces organogenesis in cotton (Gossypium hirsutum L.) tissues cultured in vitro. Plant Cell Rep 32:675–686

    Article  PubMed  CAS  Google Scholar 

  • Canhoto JM, Mesquita JF, Cruz GS (1996) Ultrastructural changes in cotyledons of pineapple guava (Myrtaceae) during somatic embryogenesis. Ann Bot 78:513–521

    Article  Google Scholar 

  • Canhoto JM, Rama SC, Cruz GS (2006) Somatic embryogenesis and plant regeneration in carob (Ceratonia siliqua L.). In Vitro Cell Dev Biol-Plant 42:514–519

    Article  CAS  Google Scholar 

  • Canter PH, Thomas H, Ernst E (2005) Bringing medicinal plants into cultivation: opportunities and challenges for biotechnology. Trends Biotechnol 23:180–185

    Article  CAS  PubMed  Google Scholar 

  • Capelo AM, Silva S, Brito G, Santos C (2010) Somatic embryogenesis induction in leaves and petioles of a mature wild olive. Plant Cell Tissue Organ Cult 103:237–242

    Article  CAS  Google Scholar 

  • Caponetti JD, Gray DJ, Trigiano RN (2005) History of plant tissue and cell culture. In: Trigiano RN, Gray DJ (eds) Plant Development and Biotechnology. CRC Press, Florida, USA, pp 9–15

    Google Scholar 

  • Carpentier AS, Abreu S, Trichet M, Satiat-Jeunemaitre B (2012) Microwaves and tea: new tools to process plant tissue for transmission electron microscopy. J Microsc 247:94–105

    Article  CAS  PubMed  Google Scholar 

  • Chakrabarty D, Park SY, Ali MB, Shin KS, Paek KY (2006) Hyperhydricity in apple: ultrastructural and physiological aspects. Tree Physiol 26:377–388

    Article  CAS  PubMed  Google Scholar 

  • Chalfie M, Kain SR (2005) Methods of biochemical analysis, green fluorescent protein: properties, applications and protocols, vol 47. Wiley-Interscience, New Jersey

    Book  Google Scholar 

  • Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805

    Article  CAS  PubMed  Google Scholar 

  • Chandler DE, Roberson RW (2009) Bioimaging: current concepts in light and electron microscopy. Jones and Bartlett Publishers, USA

    Google Scholar 

  • Ckurshumova W, Caragea AE, Goldstein RS, Berleth T (2011) Glow in the dark: fluorescent proteins as cell and tissue-specific markers in plants. Mol Plant 4:794–804

    Article  CAS  PubMed  Google Scholar 

  • Cole M, Jacobs B, Soubigou-Taconnat L, Balzergue S, Renou JP, Chandler JW, Werr W (2013) Live imaging of DORNRÖSCHEN and DORNRÖSCHEN-LIKE promoter activity reveals dynamic changes in cell identity at the microcallus surface of Arabidopsis embryonic suspensions. Plant Cell Rep 32:45–59

    Article  CAS  PubMed  Google Scholar 

  • Correll MJ, Weathers PJ (2001) Effects of light, CO2 and humidity on carnation growth, hyperhydration and cuticular wax development in a mist reactor. In Vitro Cell Dev Biol-Plant 37:405–413

    Article  Google Scholar 

  • da Cruz ACF, Rocha DI, Iarema L, Ventrella MC, Costa MGC, Neto VBP, Otoni WC (2014) In vitro organogenesis from root culture segments of Bixa orellana L. (Bixaceae). In Vitro Cell Dev Biol-Plant 50:76–83

    Article  CAS  Google Scholar 

  • da Silva ML, Pinto DLP, Guerra MP, Floh ES, Bruckner CH, Otoni WC (2009) A novel regeneration system for a wild passion fruit species (Passiflora cincinnata Mast.) based on somatic embryogenesis from mature zygotic embryos. Plant Cell, Tissue Organ Cult 99:47–54

    Article  CAS  Google Scholar 

  • Dai J-L, Tan X, Zhan Y-G, Zhang Y-Q, Xiao S, Gao Y, Xu D-W, Wang T, Wang X-C, You X-L (2011) Rapid and repetitive plant regeneration of Aralia elata Seem. via somatic embryogenesis. Plant Cell, Tissue Organ Cult 104:125–130

    Article  Google Scholar 

  • Davidson MW, Campbell RE (2009) Engineered fluorescent proteins: innovations and applications. Nat Methods 6:713–717

    Article  CAS  PubMed  Google Scholar 

  • De Boer HH, Van der Merwe AE, Maat GJR (2013) The diagnostic value of microscopy in dry bone palaeopathology: a review. Intl J Paleopathol 3:113–121

    Article  Google Scholar 

  • de Oliveira LM, Paiva R, de Santana JRF, Alves E, Nogueira RC, Pereira FD (2008) Effect of cytokinins on in vitro development of autotrophism and acclimatization of Annona glabra L. In Vitro Cell Dev Biol-Plant 44:128–135

    Article  CAS  Google Scholar 

  • Del Bianco M, Giustini L, Sabatini S (2013) Spatiotemporal changes in the role of cytokinin during root development. New Phytol 199:324–338

    Article  PubMed  CAS  Google Scholar 

  • Demeter Z, Surányi G, Molnár VA, Sramkó G, Beyer D, Kónya Z, Vasas G, Hamvas M, Máthé C (2010) Somatic embryogenesis and regeneration from shoot primordia of Crocus heuffelianus. Plant Cell Tissue Organ Cult 100:349–353

    Article  Google Scholar 

  • Dewir Y, Singh N, Shaik S, Nicholas A (2010) Indirect regeneration of the Cancer bush (Sutherlandia frutescens L.) and detection of l-canavanine in in vitro plantlets using NMR. In Vitro Cell Dev Biol-Plant 46:41–46

    Article  Google Scholar 

  • Dobránszki J, Teixeira da Silva JA (2010) Micropropagation of apple—A review. Biotechnol Adv 28:462–488

    Article  PubMed  CAS  Google Scholar 

  • Domozych DS (2012) The quest for four-dimensional imaging in plant cell biology: it’s just a matter of time. Ann Bot 110:461–474

    Article  PubMed Central  PubMed  Google Scholar 

  • El-Bakry M, Sheehan J (2014) Analysing cheese microstructure: a review of recent developments. J Food Eng 125:84–96

    Article  Google Scholar 

  • Fehér A, Pasternak TP, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tissue Organ Cult 74:201–228

    Article  Google Scholar 

  • Follet-Gueye M-L, Pagny S, Faye L, Gomord V, Driouich A (2003) An improved chemical fixation method suitable for immunogold localization of green fluorescent protein in the Golgi apparatus of tobacco bright yellow (BY-2) cells. J Histochem Cytochem 51:931–940

    Article  CAS  PubMed  Google Scholar 

  • Fontes MA, Otoni WC, Carolino SMB, Brommonschenkel SH, Fontes EPB, Fári M, Louro RP (1999) Hyperhydricity in pepper plants regenerated in vitro: involvement of BiP (Binding Protein) and ultrastructural aspects. Plant Cell Rep 19:81–87

    Article  CAS  Google Scholar 

  • George EF (1993) Plant propagation by tissue culture, part 1: the technology. Exegetics Ltd, London, UK

    Google Scholar 

  • Grzebelus E, Szklarczyk M, Baranski R (2012) An improved protocol for plant regeneration from leaf- and hypocotyl-derived protoplasts of carrot. Plant Cell, Tissue Organ Cult 109:101–109

    Article  Google Scholar 

  • Guha S, Rao IU (2010) Culture surface and exogenous putrescine-altered shoot growth pattern in mannitol- and cadmium chloride-pretreated callus of Cymbidium Via del Playa “Yvonne”. In Vitro Cell Dev Biol-Plant 46:491–498

    Article  CAS  Google Scholar 

  • Gzyl J, Przymusiński R, Gwóźdź EA (2009) Ultrastructure analysis of cadmium-tolerant and -sensitive cell lines of cucumber (Cucumis sativus L.). Plant Cell, Tissue Organ Cult 99:227–232

    Article  CAS  Google Scholar 

  • Haseloff J, Siemering KR (2005) The uses of green fluorescent protein in plants. In: Green Fluorescent Protein. Wiley, pp 259–284. doi:10.1002/0471739499.ch12

  • Hashimoto T, Takahashi K, Sato M, Bandara PKGSS, Nabeta K (2011) Cloning and characterization of an allene oxide cyclase, PpAOC3, in Physcomitrella patens. Plant Growth Regul 65:239–245

    Article  CAS  Google Scholar 

  • Hazarika BN (2006) Morpho-physiological disorders in in vitro culture of plants. Sci Hortic 108:105–120

    Article  CAS  Google Scholar 

  • He Y, Guo X, Lu R, Niu B, Pasapula V, Hou P, Cai F, Xu Y, Chen F (2009) Changes in morphology and biochemical indices in browning callus derived from Jatropha curcas hypocotyls. Plant Cell Tissue Organ Cult 98:11–17

    Article  CAS  Google Scholar 

  • Holme IB, Brinch-Pedersen H, Lange M, Holm PB (2006) Transformation of barley (Hordeum vulgare L.) by Agrobacterium tumefaciens infection of in vitro cultured ovules. Plant Cell Rep 25:1325–1335

    Article  CAS  PubMed  Google Scholar 

  • Hraška M, Rakouský S, Čurn V (2006) Green fluorescent protein as a vital marker for non-destructive detection of transformation events in transgenic plants. Plant Cell, Tissue Organ Cult 86:303–318

    Article  CAS  Google Scholar 

  • Huai J, Zheng J, Wang G (2009) Overexpression of a new Cys2/His2 zinc finger protein ZmZF1 from maize confers salt and drought tolerance in transgenic Arabidopsis. Plant Cell Tissue Organ Cult 99:117–124

    Article  CAS  Google Scholar 

  • Huang C-H, Chung J-P (2011) Efficient indirect induction of protocorm-like bodies and shoot proliferation using field-grown axillary buds of a Lycaste hybrid. Plant Cell Tissue Organ Cult 106:31–38

    Article  Google Scholar 

  • Iliev I, Kitin P (2011) Origin, morphology, and anatomy of fasciation in plants cultured in vivo and in vitro. Plant Growth Regul 63:115–129

    Article  CAS  Google Scholar 

  • Ivanova M, Van Staden J (2010) Natural ventilation effectively reduces hyperhydricity in shoot cultures of Aloe polyphylla Schönland ex Pillans. Plant Growth Regul 60:143–150

    Article  CAS  Google Scholar 

  • Jahn KA, Barton DA, Kobayashi K, Ratinac KR, Overall RL, Braet F (2012) Correlative microscopy: providing new understanding in the biomedical and plant sciences. Micron 43:565–582

    Article  CAS  PubMed  Google Scholar 

  • Jausoro V, Llorente BE, Apóstolo NM (2010a) Structural differences between hyperhydric and normal in vitro shoots of Handroanthus impetiginosus (Mart. ex DC) Mattos (Bignoniaceae). Plant Cell Tissue Organ Cult 101:183–191

    Article  CAS  Google Scholar 

  • Jausoro V, Llorente BE, Apóstolo NM (2010b) Structural differences between hyperhydric and normal in vitro shoots of Handroanthus impetiginosus (Mart. ex DC) Mattos (Bignoniaceae). Plant Cell, Tissue Organ Cult 101:183–191

    Article  CAS  Google Scholar 

  • Juszczyk J, Krzywiecki M, Kruszka R, Bodzenta J (2013) Application of scanning thermal microscopy for investigation of thermal boundaries in multilayered photonic structures. Ultramicroscopy 135:95–98

    Article  CAS  PubMed  Google Scholar 

  • Kaeppler SM, Kaeppler HF, Rhee Y (2000) Epigenetic aspects of somaclonal variation in plants. Plant Mol Biol 43:179–188

    Article  CAS  PubMed  Google Scholar 

  • Kajikawa K, Yamaguchi T, Katsuda S, Miwa A (1975) An improved electron stain for elastic fibers using tannic acid. J Electron Microsc 24:287–289

    CAS  Google Scholar 

  • Kane ME (2005) Shoot culture procedures. In: Trigiano RN, Gray DJ (eds) Plant Development and Biotechnology. CRC Press, Washington D.C. USA

    Google Scholar 

  • Kang YM, Park DJ, Min JY, Song HJ, Jeong MJ, Kim YD, Kang SM, Karigar CS, Choi MS (2011) Enhanced production of tropane alkaloids in transgenic Scopolia parviflora hairy root cultures over-expressing putrescine N-methyl transferase (PMT) and hyoscyamine-6β-hydroxylase (H6H). In Vitro Cell Dev Biol-Plant 47:516–524

    Article  CAS  Google Scholar 

  • Karuppusamy S (2009) A review on trends in production of secondary metabolites from higher plants by in vitro tissue, organ and cell cultures. J Med Plant Res 3:1222–1239

    CAS  Google Scholar 

  • Kozai T (1991) Photoautotrophic micropropagation. In Vitro Cell Dev Biol-Plant 27:47–51

    Article  Google Scholar 

  • Kozai T, Kubota C, Ryoung Jeong B (1997) Environmental control for the large-scale production of plants through in vitro techniques. Plant Cell Tissue Organ Cult 51:49–56

    Article  Google Scholar 

  • Kuo J (2007) Electron microscopy: Methods and protocols, vol 369. Humana Press Inc., New Jersey, USA

    Google Scholar 

  • Kurczyńska EU, Gaj MD, Ujczak A, Mazur E (2007) Histological analysis of direct somatic embryogenesis in Arabidopsis thaliana (L.) Heynh. Planta 226:619–628

    Article  PubMed  CAS  Google Scholar 

  • Lai K, Yusoff K, Mahmood M (2013) Functional ectodomain of the hemagglutinin-neuraminidase protein is expressed in transgenic tobacco cells as a candidate vaccine against Newcastle disease virus. Plant Cell Tissue Organ Cult 112:117–121

    Article  CAS  Google Scholar 

  • Larkin P, Scowcroft W (1981) Somaclonal variation—A novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214

    Article  CAS  PubMed  Google Scholar 

  • Lin G-Z, Zhao X-M, Hong S-K, Lian Y-J (2011) Somatic embryogenesis and shoot organogenesis in the medicinal plant Pulsatilla koreana Nakai. Plant Cell Tissue Organ Cult 106:93–103

    Article  CAS  Google Scholar 

  • Liu X, Sun L, Li C, Yang A, Zhang J (2013) Enhanced expression of the human CD14 protein in tobacco using a 22-kDa alpha-zein signal peptide. Plant Cell Tissue Organ Cult 112:9–18

    Article  CAS  Google Scholar 

  • López-Villalobos A, Dodds PF, Hornung R (2011) Lauric acid improves the growth of zygotic coconut (Cocos nucifera L.) embryos in vitro. Plant Cell Tissue Organ Cult 106:317–327

    Article  CAS  Google Scholar 

  • Mathur J (2007) The illuminated plant cell. Trends in Plant Sci 12:506–513

    Article  CAS  Google Scholar 

  • Mayer JLS, Stancato GC, Appezzato-Da-Glória B (2010) Direct regeneration of protocorm-like bodies (PLBs) from leaf apices of Oncidium flexuosum Sims (Orchidaceae). Plant Cell Tissue Organ Cult 103:411–416

    Article  CAS  Google Scholar 

  • Mendes MD, Cristina Figueiredo A, Margarida Oliveira M, Trindade H (2013) Essential oil production in shoot cultures versus field-grown plants of Thymus caespititius. Plant Cell Tissue Organ Cult 113:341–351

    Article  CAS  Google Scholar 

  • Mondal TK, Bhattacharya A, Laxmikumaran M, Singh Ahuja P (2004) Recent advances of tea (Camellia sinensis) biotechnology. Plant Cell Tissue Organ Cult 76:195–254

    Article  CAS  Google Scholar 

  • Motte H, Vereecke D, Geelen D, Werbrouck S (2014) The molecular path to in vitro shoot regeneration. Biotechnol Adv 32:107–121

    Article  CAS  PubMed  Google Scholar 

  • Moyo M, Finnie JF, Van Staden J (2009) In vitro morphogenesis of organogenic nodules derived from Sclerocarya birrea subsp. caffra leaf explants. Plant Cell Tissue Organ Cult 98:273–280

    Article  Google Scholar 

  • Moyo M, Bairu MW, Amoo SO, Van Staden J (2011) Plant biotechnology in South Africa: micropropagation research endeavours, prospects and challenges. S Afr J Bot 77:996–1011

    Article  Google Scholar 

  • Moyo M, Finnie JF, Van Staden J (2012) Topolins in Pelargonium sidoides micropropagation: do the new brooms really sweep cleaner? Plant Cell Tissue Organ Cult 110:319–327

    Article  CAS  Google Scholar 

  • Moyo M, Koetle MJ, Van Staden J (2014) Photoperiod and plant growth regulator combinations influence growth and physiological responses in Pelargonium sidoides DC. In Vitro Cell Dev Biol-Plant 50:487–492

    Article  CAS  Google Scholar 

  • Muday GK, DeLong A (2001) Polar auxin transport: controlling where and how much. Trends in Plant Sci 6:535–542

    Article  CAS  Google Scholar 

  • Murphy DB, Davidson MW (2013) Fundamentals of light microscopy and electronic imaging, 2nd edn. Wiley-Blackwell, New Jersey, USA

    Google Scholar 

  • Nakagawa R, Kurushima M, Matsui M, Nakamura R, Kubo T, Funada R (2011) Polyamines promote the development of embryonal-suspensor masses and the formation of somatic embryos in Picea glehnii. In Vitro Cell Dev Biol-Plant 47:480–487

    Article  CAS  Google Scholar 

  • Nebenführ A, Gallagher LA, Dunahay TG, Frohlick JA, Mazurkiewicz AM, Meehl JB, Staehelin LA (1999) Stop-and-Go movements of plant Golgi stacks are mediated by the acto-myosin system. Plant Physiol 121:1127–1141

    Article  PubMed Central  PubMed  Google Scholar 

  • Neelakandan A, Wang K (2012) Recent progress in the understanding of tissue culture-induced genome level changes in plants and potential applications. Plant Cell Rep 31:597–620

    Article  CAS  PubMed  Google Scholar 

  • Nogué F, Grandjean O, Craig S, Dennis S, Chaudhury M (2000) Higher levels of cell proliferation rate and cyclin CycD3 expression in the Arabidopsis amp1 mutant. Plant Growth Regul 32:275–283

    Article  Google Scholar 

  • Olmos E, Hellín E (1998) Ultrastructural differences of hyperhydric and normal leaves from regenerated carnation plants. Sci Hortic 75:91–101

    Article  Google Scholar 

  • Parra-Vega V, Renau-Morata B, Sifres A, Seguí-Simarro JM (2013) Stress treatments and in vitro culture conditions influence microspore embryogenesis and growth of callus from anther walls of sweet pepper (Capsicum annuum L.). Plant Cell Tissue Organ Cult 112:353–360

    Article  CAS  Google Scholar 

  • Pavlović S, Vinterhalter B, Zdravković-Korać S, Vinterhalter D, Zdravković J, Cvikić D, Mitić N (2013) Recurrent somatic embryogenesis and plant regeneration from immature zygotic embryos of cabbage (Brassica oleracea var. capitata) and cauliflower (Brassica oleracea var. botrytis). Plant Cell Tissue Organ Cult 113:397–406

    Article  CAS  Google Scholar 

  • Pavoković D, Poljuha D, Horvatić A, Ljubešić N, Hagège D, Krsnik-Rasol M (2012) Morphological and proteomic analyses of sugar beet cultures and identifying putative markers for cell differentiation. Plant Cell Tissue Organ Cult 108:111–119

    Article  CAS  Google Scholar 

  • Pence VC (2010) The possibilities and challenges of in vitro methods for plant conservation. Kew Bull 65:539–547

    Article  Google Scholar 

  • Picas L, Milhiet P-E, Hernández-Borrell J (2012) Atomic force microscopy: a versatile tool to probe the physical and chemical properties of supported membranes at the nanoscale. Chem Phys Lipids 165:845–860

    Article  CAS  PubMed  Google Scholar 

  • Picoli EAT, Otoni WC, MrL Figueira, Carolino SMB, Almeida RS, Silva EAM, Carvalho CR, Fontes EPB (2001) Hyperhydricity in in vitro eggplant regenerated plants: structural characteristics and involvement of BiP (Binding Protein). Plant Sci 160:857–868

    Article  CAS  PubMed  Google Scholar 

  • Pospíšilová J, Synková H, Haisel D, Semorádová S (2007) Acclimation of plantlets to ex vitro conditions: effects of air humidity, irradiance, CO2 concentration and abscisic acid (a review). Acta Hortic 748:29–38

    Article  Google Scholar 

  • Potocka I, Baldwin TC, Kurczynska EU (2012) Distribution of lipid transfer protein 1 (LTP1) epitopes associated with morphogenic events during somatic embryogenesis of Arabidopsis thaliana. Plant Cell Rep 31:2031–2045

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111:229–233

    Article  CAS  PubMed  Google Scholar 

  • Ptak A, Tahchy AE, Wyżgolik G, Henry M, Laurain-Mattar D (2010) Effects of ethylene on somatic embryogenesis and galanthamine content in Leucojum aestivum L. cultures. Plant Cell Tissue Organ Cult 102:61–67

    Article  CAS  Google Scholar 

  • Qi Y, Lou Q, Quan Y, Liu Y, Wang Y (2013) Flower-specific expression of the Phalaenopsis flavonoid 3′, 5′-hydroxylase modifies flower color pigmentation in Petunia and Lilium. Plant Cell Tissue Organ Cult 115:263–273

    Article  CAS  Google Scholar 

  • Quiala E, Cañal M-J, Meijón M, Rodríguez R, Chávez M, Valledor L, de Feria M, Barbón R (2012) Morphological and physiological responses of proliferating shoots of teak to temporary immersion and BA treatments. Plant Cell Tissue Organ Cult 109:223–234

    Article  CAS  Google Scholar 

  • Raju SC, Kathiravan K, Aslam A, Shajahan A (2013) An efficient regeneration system via somatic embryogenesis in mango ginger (Curcuma amada Roxb.). Plant Cell, Tissue Organ Cult 112:387–393

    Article  CAS  Google Scholar 

  • Ramachandra Rao S, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20:101–153

    Article  CAS  Google Scholar 

  • Ramakrishna A, Giridhar P, Ravishankar GA (2011) Calcium and calcium ionophore A23187 induce high-frequency somatic embryogenesis in cultured tissues of Coffea canephora P ex Fr. In Vitro Cell Dev Biol-Plant 47:667–673

    Article  CAS  Google Scholar 

  • Ramakrishna A, Giridhar P, Jobin M, Paulose CS, Ravishankar GA (2012) Indoleamines and calcium enhance somatic embryogenesis in Coffea canephora P ex Fr. Plant Cell, Tissue Organ Cult 108:267–278

    Article  CAS  Google Scholar 

  • Redha A, Suleman P (2011) Effects of exogenous application of polyamines on wheat anther cultures. Plant Cell Tissue Organ Cult 105:345–353

    Article  CAS  Google Scholar 

  • Reichel C, Mathur J, Eckes P, Langenkemper K, Koncz C, Schell J, Reiss B, Maas C (1996) Enhanced green fluorescence by the expression of an Aequorea victoria green fluorescent protein mutant in mono- and dicotyledonous plant cells. Proc Natl Acad Sci USA 93:5888–5893

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Roberts WS, Lonsdale DJ, Griffiths J, Higson SPJ (2007) Advances in the application of scanning electrochemical microscopy to bioanalytical systems. Biosens Bioelectron 23:301–318

    Article  CAS  PubMed  Google Scholar 

  • Rocha DI, Vieira LM, Tanaka FAO, da Silva LC, Otoni WC (2012) Anatomical and ultrastructural analyses of in vitro organogenesis from root explants of commercial passion fruit (Passiflora edulis Sims). Plant Cell Tissue Organ Cult 111:69–78

    Article  CAS  Google Scholar 

  • Rojas-Martínez L, Visser RGF, de Klerk G-J (2010) The hyperhydricity syndrome: waterlogging of plant tissues as a major cause. Propag Ornam Plant 10:169–175

    Google Scholar 

  • Rosa YBCJ, Dornelas MC (2012) In vitro plant regeneration and de novo differentiation of secretory trichomes in Passiflora foetida L. (Passifloraceae). Plant Cell Tissue Organ Cult 108:91–99

    Article  CAS  Google Scholar 

  • Rosa YBC, Aizza LCB, Armanhi JSL, Dornelas MC (2013) A Passiflora homolog of a D-type cyclin gene is differentially expressed in response to sucrose, auxin, and cytokinin. Plant Cell Tissue Organ Cult 115:233–242

    Article  CAS  Google Scholar 

  • Rout GR, Samantaray S, Das P (2000) In vitro manipulation and propagation of medicinal plants. Biotechnol Adv 18:91–120

    Article  CAS  PubMed  Google Scholar 

  • Rout GR, Mohapatra A, Jain SM (2006) Tissue culture of ornamental pot plant: a critical review on present scenario and future prospects. Biotechnol Adv 24:531–560

    Article  CAS  PubMed  Google Scholar 

  • Ruffoni B, Savona M (2013) Physiological and biochemical analysis of growth abnormalities associated with plant tissue culture. Hortic Environ Biotechnol 54:191–205

    Article  CAS  Google Scholar 

  • Rugkhla A, Jones MGK (1998) Somatic embryogenesis and plantlet formation in Santalum album and S. spicatum. J Exp Bot 49:563–571

    Article  CAS  Google Scholar 

  • Sáenz L, Azpeitia A, Chuc-Armendariz B, Chan JL, Verdeil JL, Hocher V, Oropeza C (2006) Morphological and histological changes during somatic embryo formation from coconut plumule explants. In Vitro Cell Dev Biol-Plant 42:19–25

    Article  Google Scholar 

  • Sato S, Adachi A, Sasaki Y, Ghazizadeh M (2008) Oolong tea extract as a substitute for uranyl acetate in staining of ultrathin sections. J Microsc 229:17–20

    Article  CAS  PubMed  Google Scholar 

  • Sharifi G, Ebrahimzadeh H, Ghareyazie B, Karimi M (2010) Globular embryo-like structures and highly efficient thidiazuron-induced multiple shoot formation in saffron (Crocus sativus L.). In Vitro Cell Dev Biol-Plant 46:274–280

    Article  CAS  Google Scholar 

  • Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol 59:223–239

    Article  CAS  PubMed  Google Scholar 

  • Shur J, Price R (2012) Advanced microscopy techniques to assess solid-state properties of inhalation medicines. Adv Drug Deliver Rev 64:369–382

    Article  CAS  Google Scholar 

  • Sirerol-Piquer MS, Cebrián-Silla A, Alfaro-Cervelló C, Gomez-Pinedo U, Soriano-Navarro M, Verdugo J-MG (2012) GFP immunogold staining, from light to electron microscopy, in mammalian cells. Micron 43:589–599

    Article  CAS  PubMed  Google Scholar 

  • Sivanesan I, Song JY, Hwang SJ, Jeong BR (2011) Micropropagation of Cotoneaster wilsonii Nakai—a rare endemic ornamental plant. Plant Cell Tissue Organ Cult 105:55–63

    Article  Google Scholar 

  • Smith-Espinoza C, Bartels D, Phillips J (2007) Analysis of a LEA gene promoter via Agrobacterium-mediated transformation of the desiccation tolerant plant Lindernia brevidens. Plant Cell Rep 26:1681–1688

    Article  CAS  PubMed  Google Scholar 

  • Smulders M, de Klerk G (2011) Epigenetics in plant tissue culture. Plant Growth Regul 63:137–146

    Article  CAS  Google Scholar 

  • Sreedhar RV, Venkatachalam L, Neelwarne B (2009) Hyperhydricity-related morphologic and biochemical changes in vanilla (Vanilla planifolia). J Plant Growth Regul 28:46–57

    Article  CAS  Google Scholar 

  • Steiner N, Santa-Catarina C, Guerra MP, Cutri L, Dornelas MC, Floh ES (2012) A gymnosperm homolog of SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE-1 (SERK1) is expressed during somatic embryogenesis. Plant Cell Tissue Organ Cult 109:41–50

    Article  CAS  Google Scholar 

  • Stone SL, Kwong LW, Yee KM, Pelletier J, Lepiniec L, Fischer RL, Goldberg RB, Harada JJ (2001) LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. Proc Natl Acad Sci 98:11806–11811

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sun X, Ji W, Ding X, Bai X, Cai H, Yang S, Qian X, Sun M, Zhu Y (2013) GsVAMP72, a novel Glycine soja R-SNARE protein, is involved in regulating plant salt tolerance and ABA sensitivity. Plant Cell Tissue Organ Cult 113:199–215

    Article  CAS  Google Scholar 

  • Tang W, Newton RJ, Charles TM (2005) High efficiency inducible gene expression system based on activation of a chimeric transcription factor in transgenic pine. Plant Cell Rep 24:619–628

    Article  CAS  PubMed  Google Scholar 

  • Teixeira da Silva JA (2003) Chrysanthemum: advances in tissue culture, cryopreservation, postharvest technology, genetics and transgenic biotechnology. Biotechnol Adv 21:715–766

    Article  CAS  PubMed  Google Scholar 

  • Tewari RK, Prommer J, Watanabe M (2013) Endogenous nitric oxide generation in protoplast chloroplasts. Plant Cell Rep 32:31–44

    Article  CAS  PubMed  Google Scholar 

  • Thomasson MS, Macnaughtan MA (2013) Microscopy basics and the study of actin–actin-binding protein interactions. Anal Biochem 443:156–165

    Article  CAS  PubMed  Google Scholar 

  • Torrealba F, Carrasco MA (2004) A review on electron microscopy and neurotransmitter systems. Brain Res Rev 47:5–17

    Article  CAS  PubMed  Google Scholar 

  • Tranfield EM, Walker DC (2013) The ultrastructure of animal atherosclerosis: what has been done, and the electron microscopy advancements that could help scientists answer new biological questions. Micron 46:1–11

    Article  PubMed  Google Scholar 

  • Trigiano RN, Malueg KR, Pickens KA, Cheng Z-M, Graham ET (2005) Histological techniques. In: Trigiano RN, Gray DJ (eds) Plant Development and Biotechnology. CRC Press, Boca Raton, Florida, USA, pp 39–54

    Google Scholar 

  • Valero-Aracama C, Kane M, Wilson S, Vu J, Anderson J, Philman N (2006) Photosynthetic and carbohydrate status of easy-and difficult-to-acclimatize sea oats (Uniola paniculata L.) genotypes during in vitro culture and ex vitro acclimatization. In Vitro Cell Dev Biol-Plant 42:572–583

    Article  CAS  Google Scholar 

  • Van Eck J, Keen P (2009) Continued expression of plant-made vaccines following long-term cryopreservation of antigen-expressing tobacco cell cultures. In Vitro Cell Dev Biol-Plant 45:750–757

    Article  CAS  Google Scholar 

  • Vasil I (2008) A history of plant biotechnology: from the cell theory of Schleiden and Schwann to biotech crops. Plant Cell Rep 27:1423–1440

    Article  CAS  PubMed  Google Scholar 

  • Verpoorte R, Memelink J (2002) Engineering secondary metabolite production in plants. Curr Opin Biotech 13:181–187

    Article  CAS  PubMed  Google Scholar 

  • Vieten A, Sauer M, Brewer PB, Friml J (2007) Molecular and cellular aspects of auxin-transport-mediated development. Trends Plant Sci 12:160–168

    Article  CAS  PubMed  Google Scholar 

  • Wakte KV, Nadaf AB, Thengane RJ, Jawali N (2009) In vitro regenerating plantlets in Pandanus amaryllifolius Roxb. as a model system to study the development of lower epidermal papillae. In Vitro Cell Dev Biol-Plant 45:701–707

    Article  Google Scholar 

  • Werker E, Leshem B (1987) Structural changes during vitrification of carnation plantlets. Ann Bot 59:377–385

    Google Scholar 

  • Whited AM, Park PSH (2014) Atomic force microscopy: a multifaceted tool to study membrane proteins and their interactions with ligands. Biochim Bioph Acta- Biomembranes 1838:56–68

    Article  CAS  Google Scholar 

  • Woo SM, Wetzstein HY (2008) Morphological and histological evaluations of in vitro regeneration in Elliottia racemosa leaf explants induced on media with thidiazuron. J Am Soc Hortic Sci 133:167–172

    Google Scholar 

  • Wu Z, Chen LJ, Long YJ (2009) Analysis of ultrastructure and reactive oxygen species of hyperhydric garlic (Allium sativum L.) shoots. In Vitro Cell Dev Biol-Plant 45:483–490

    Article  CAS  Google Scholar 

  • Wu J-J, Liu Y-W, Sun M-X (2011) Improved and high throughput quantitative measurements of weak GFP expression in transgenic plant materials. Plant Cell Rep 30:1253–1260

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Guo R, Cheng C, Zhang H, Zhang Y, Wang X (2013) Overexpression of ALDH2B8, an aldehyde dehydrogenase gene from grapevine, sustains Arabidopsis growth upon salt stress and protects plants against oxidative stress. Plant Cell, Tissue Organ Cult 114:187–196

    Article  CAS  Google Scholar 

  • Yang Y, Yang L, Li Z (2013) Molecular cloning and identification of a putative tomato cationic amino acid transporter-2 gene that is highly expressed in stamens. Plant Cell, Tissue Organ Cult 112:55–63

    Article  CAS  Google Scholar 

  • Zacharias DA, Tsien RY (2005) Molecular biology and mutation of green fluorescent protein. In: Green Fluorescent Protein. Wiley, pp 83–120. doi:10.1002/0471739499.ch5

  • Zimmerman JL (1993) Somatic embryogenesis: a model for early development in higher plants. Plant Cell 5:1411–1423

    Article  PubMed Central  PubMed  Google Scholar 

  • Ziv M (1991) Vitrification: morphological and physiological disorders of in vitro plants. In: Debergh PC, Zimmerman RH (eds) Micropropagation: Technology and Applications. Kluwer Academic Publishers, Dordrecht, pp 45–69

    Chapter  Google Scholar 

  • Zumbusch A, Langbein W, Borri P (2013) Nonlinear vibrational microscopy applied to lipid biology. Prog Lipid Res 52:615–632

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from Claude Leon Foundation, the University of KwaZulu-Natal and National Research Foundation, South Africa. We thank Dr W.A. Stirk for her valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Van Staden.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moyo, M., Aremu, A.O. & Van Staden, J. Insights into the multifaceted application of microscopic techniques in plant tissue culture systems. Planta 242, 773–790 (2015). https://doi.org/10.1007/s00425-015-2359-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-015-2359-4

Keywords

Navigation