Skip to main content
Log in

Micromorphology, histochemistry and ultrastructure of the foliar trichomes of Withania somnifera (L.) Dunal (Solanaceae)

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

The leaves of Withania somnifera contained four morphologically distinct trichome types: glandular capitate, non-glandular dendritic (branched), non-glandular bicellular and non-glandular multicellular trichomes. Major phytochemical compounds present within glandular and non-glandular trichomes were alkaloids and phenolic compounds.

The aim of this study was to characterize the micromorphology of the foliar trichomes of Withania somnifera as well as to elucidate the location and composition of the secretory products. Trichome density and length was also determined in three developmental stages of the leaves. Light microscopy and scanning electron microscopy showed the presence of four morphologically distinct trichome types: glandular capitate, non-glandular dendritic, non-glandular bicellular and non-glandular multicellular. The dendritic trichomes exhibited cuticular warts which are involved in the “Lotus-Effect”. Glandular capitate and non-glandular dendritic trichomes were aggregated on the mid-vein of young and mature leaves, possibly to protect underlying vasculature. Histochemical staining also revealed the presence of two major classes of phytochemical compounds that are of medicinal importance, i.e. alkaloids and phenolic compounds. These compounds are used to treat a wide variety of ailments and also act as chemical deterrents in plants. The results of this study explain possible roles of four morphologically distinct trichome types based on their morphology, foliar distribution and content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Adedeji O, Ajuwon OY, Babawale OO (2007) Foliar epidermal studies, organographic distribution and taxonomic importance of trichomes in the family Solanaceae. Int J Bot 3:276–282. doi:10.3923/ijb.2007.276.282

    Article  Google Scholar 

  • Arnott HJ, Webb MA (2000) Twinned raphides of calcium oxalate in grapes (Vitis): implications for crystal stability and function. Int J Plant Sci 161:133–142 (pmid: 10648203)

    Article  CAS  PubMed  Google Scholar 

  • Ascensão L, Pais MSS (1987) Glandular trichomes of Artemisia campestris (ssp. Maritima): ontogeny and histochemistry of the secretory product. Bot Gazet 148:221–227. doi:10.1086/337650

    Article  Google Scholar 

  • Atal CK, Schwarting AE (1961) Ashwagandha: an ancient Indian drug. Econ Bot 15:256–263. doi:10.1007/BF02862166

    Article  Google Scholar 

  • Barthlott W, Neinhuis C (1997) Purity of the sacred Lotus, or escape from contamination in biological surfaces. Planta 202:1–8. doi:10.1007/s004250050096

    Article  CAS  Google Scholar 

  • Bhatt A, Naidoo Y, Nicolas A (2010) The foliar trichomes of Hypoestes aristata (Vahl) Sol. Ex Roem. & Schult var aristata (Acanthaceae) a widespread medicinal plant species in tropical sub-Saharan Africa: which comments on its possible phylogenetic significance. Biol Res 43:403–409 (pmid: 21526266)

    Article  CAS  PubMed  Google Scholar 

  • Boix YF, Victório CP, Defaveri ACA, Arruda RDCDO, Sato A, Lage CLS (2011) Glandular trichomes of Rosmarinus officinalis L.: anatomical and phytochemical analysis of leaf volatiles. Plant Biosyst 145:848–856 (agid: 344995)

    Article  Google Scholar 

  • Cain AJ (1947) The use of Nile blue in the examination of lipids. Q J Microsc Sci 88:383–392

    Google Scholar 

  • Chatterjee S, Srivastava S, Khalid A, Singh N, Sangwan RS, Sidhu OP, Ray R, Khetrapal CL, Tuli R (2010) Comprehensive metabolic fingerprinting of Withania somnifera leaf and root extracts. Phytochemistry 71:1085–1094. doi:10.1016/j.phytochem.2010.04.001

    Article  CAS  PubMed  Google Scholar 

  • Chaurasiya ND, Gupta VK, Sangwan RS (2007) Leaf ontogenic phase-related dynamics of withaferin A and withanone biogenesis in Ashwagandha (Withania somnifera Dunal)—an important medicinal herb. J Plant Biol 50:508–513. doi:10.1007/BF03030691

    Article  Google Scholar 

  • Cosgrove DJ (2000) Loosening of plant cell walls by expansins. Nature 407:321–326. doi:10.1038/35030000

    Article  CAS  PubMed  Google Scholar 

  • Dai X, Wang G, Yang DS, Tang Y, Broun P, Marks MD, Summer LW, Dixon RA, Zhao PX (2010) Trichome: a comparative omics database for plant trichomes. Plant Physiol 152:44–54. doi:10.1104/pp.109.145813

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Debnath M, Malik CP, Bisen PS (2006) Micropropagation: a tool for the production of high quality plant-based medicines. Cur Pharmaceut Biotech 7:33–49 (doi: 0.2174/138920106775789638)

    Article  CAS  Google Scholar 

  • Duke SO (1994) Glandular trichomes—a focal point of chemical and structural interactions. Int J Plant Sci 155:617–620

    Article  Google Scholar 

  • Fahn A (1988) Secretory tissues in vascular plants. New Phytol 108:229–257. doi:10.1111/j.1469-8137.1988.tb04159.x

    Article  Google Scholar 

  • Fahn A (2000) Structure and function of secretory cells. Adv Bot Res 31:37–75. doi:10.1016/S0065-2296(00)31006-0

    Article  CAS  Google Scholar 

  • Fordyce JA, Agrawal AA (2001) The role of plant trichomes and caterpillar group size on growth and defence of the pipevine swallowtail Battus philenor. J Anim Ecol 70:997–1005. doi:10.1046/j.0021-8790.2001.00568.x

    Article  Google Scholar 

  • Franceschi VR, Horner HT Jr (1980) Calcium oxalate crystals in plants. Bot Rev 46:361–429

    Article  CAS  Google Scholar 

  • Franceschi VR, Nakata PA (2005) Calcium oxalate in plants: formation and function. Ann Rev Plant Biol 56:41–71. doi:10.1146/annurev.arplant.56.032604.144106

    Article  CAS  Google Scholar 

  • Furr M, Mahlberg PG (1981) Histochemical analyses of laticifers and glandular trichomes in Cannabis sativa. J Nat Prod 44:153–159. doi:10.1021/np50014a002

    Article  Google Scholar 

  • Gairola S, Naidoo Y, Bhatt A, Nicholas A (2008) An investigation of the foliar trichomes of Tetradenia riparia (Hochst.) Codd [Lamiaceae]: an important medicinal plant of Southern Africa. Flora 204:325–330. doi:10.1016/j.flora.2008.04.002

    Article  Google Scholar 

  • Glas JJ, Schimmel BCJ, Alba JM, Escobar-Bravo R, Scuurink RC, Kant MR (2012) Plant glandular trichomes as targets for breeding or engineering of resistance to herbivores. Int J Mol Sci. doi:10.3390/ijms131217077

    PubMed Central  PubMed  Google Scholar 

  • Grassmann J, Hippeli S, Elstner EF (2002) Plant’s defence and its benefit for animals and medicine: role of phenolics and terpenoids in avoiding oxygen stress. Plant Physiol Biochem 40:471–478. doi:10.1016/S0981-9428(02)01395-5

    Article  CAS  Google Scholar 

  • Hameed I, Hussain F (2011) Stomatal studies of some selected medicinal plants of family Solanaceae. J Med Plant Res 5:4525–4529

    Google Scholar 

  • Harisha CR, Switu J (2013) Pharmacognostical study on trichomes of Solanaceae and its significance. Univers J Pharm 2:100–104

    Google Scholar 

  • Joy PP, Thomas J, Mathew S, Skaria BP (1998) Medicinal plants. Aromatic and Med Plants Res Station. Kerala Agricultural University. p 211

  • Khan B, Ahmad SF, Bani S, Kaul A, Suri KA, Satti NK, Athar M, Qai GN (2006) Augmentation and proliferation of T lymphocytes and Th-1 cytokines by Withania somnifera in stressed mice. Int Immunopharmacol 6:1394–1403. doi:10.1016/j.intimp.2006.04.001

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Han J, Kim S, Lee HR, Shin J, Kim J, Cho J, Kim YH, Lee HJ, Kim B, Choi D (2011) Trichome density of main stem is tightly linked to PepMoV resistance in chili pepper (Capsicum annuum L.). Int J Plant Breed Res 122:1051–1058. doi:10.1007/s00122-010-1510-7

    Google Scholar 

  • Köhler RH, Cao J, Zipfel WR, Webb WW, Hanson MR (1997) Exchange of protein molecules through connections between higher plant plastids. Science 276:2039–2042. doi:10.1126/science.276.5321.2039

    Article  PubMed  Google Scholar 

  • Kumar S, Kumar V (2011) Evaluation of Withania somnifera L. (Dunal). (Solanaceae) leaf and root extracts as an antimicrobial agent-highly medicinal plants in India. Asian J Exp Biol Sci 2:155–157

    CAS  Google Scholar 

  • Kumar MS, Aslam A, Kumar DV, Ramachandran A, Shajahan A (2010a) Comparative studies on leaf-epidermal features of W. somnifera and W. obtusifolia—highly medicinal species of India. Adv Biotechnol 10:3

    Google Scholar 

  • Kumar MS, Kumar DV, Ramachandran A, Shajahan A (2010b) Anatomical studies in Withania somnifera L. (Dunal)—an important medicinal plant. Adv Biotechnol 10:3

    Google Scholar 

  • Lange BM, Wildung MR, Stauber EJ, Sanchez C, Pouchnik D, Croteau R (2000) Probig essential oil biosynthesis and secretion by functional evaluation of expressed sequence tags from mint glandular trichomes. Proc Nat Acad Sci 97:2934–2939. doi:10.1073/pnas.97.6.2934

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Levin DA (1973) The role of trichomes in plant defense. Q Rev Biol 48:3–15

    Article  Google Scholar 

  • Mahesh B, Satish S (2008) Antimicrobial activity of some important medicinal plant against plant and human pathogens. World J Agric Sci 4:839–843

    Google Scholar 

  • Marin M, Ascensão L, Lakusie B (2012) Trichomes of Satureja horvatii Silic (Lamiaceae): micromorphology and histochemistry. Arch Biol Sci Bel 64:995–1000. doi:10.1080/0972060X.2014.901604

    Article  Google Scholar 

  • Mirrett S (1982) Acridine orange stain. Inf Control 3:250–252

    CAS  Google Scholar 

  • Negro C, Tomasi L, Miceli A (2003) Phenolic compounds and antioxidant activity from red grape marc extracts. Bioresour Tech 87:41–44. doi:10.1016/S0960-8524(02)00202-X

    Article  CAS  Google Scholar 

  • Pearse AGE (1968) Histochemistry: theoretical and applied 3rd edn vol 1. Churchill Livingstone, London, pp. 1–759

  • Peiffer M, Tooker JF, Luthe DS, Felton GW (2009) Plants on early alert: glandular trichomes as sensors for insect herbivores. New Phytol 184:644–656. doi:10.1111/j.1469-8137.2009.03002.x

    Article  CAS  PubMed  Google Scholar 

  • Pickard WF (2008) Laticifers and secretory ducts: two other tube systems in plants. New Phytol 177:877–888. doi:10.1111/j.1469-8137.2007.02323.x

    Article  PubMed  Google Scholar 

  • Pyke KA, Howells CA (2002) Plastid and stromule morphogenesis in tomato. Ann Bot 90:559–566. doi:10.1093/aob/mcf235

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rahman A, Shahwar D, Naz A, Choudhary MI (2003) Withanolides from Withania coagulans. Phytochemistry 63:387–390. doi:10.5923/j.als.20120201.02

    Article  Google Scholar 

  • Ram H, Kumar A, Sharma SK, Ojha A, Rao SR (2012) Meiotic studies in Withania somnifera (L) Dunal.: a threatened medicinal herb of Indian Thar Desert. Am J Plant Sci 3:185–189. doi:10.13140/2.1.2308.6729

    Article  Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212. doi:10.1083/jcb.17.1.208

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Robinson T (1974) Metabolism and function of alkaloids in plants. Am Assoc Adv Sci 184:430–435. doi:10.1126/science.184.4135.430

    CAS  Google Scholar 

  • Rusydi A, Talip N, Latip J, Rahman RA, Sharif I (2013) Morphology of trichomes in Pogostemon cablin Benth. (Lamiaceae). Austral J Crop Sci 7:744–749

    Google Scholar 

  • Sangwan RS, Chaurasiya ND, Lal P, Misra L, Tuli R, Sangwan NS (2008) Withanolide A is inherently de novo biosynthesised in roots of the medicinal plant Ashwagandha (Withania somnifera). Physiol Plant 133:278–287. doi:10.1111/j.1399-3054.2008.01076.x

    Article  CAS  PubMed  Google Scholar 

  • Scartezzini P, Speron E (2000) Review on some plants of Indian traditional medicine with antioxidant activity. J Ethnopharmacol 71:23–43. doi:10.1016/S0378-8741(00)00213-0

    Article  CAS  PubMed  Google Scholar 

  • Senthil K, Wasnik NG, Kim Y, Yanj D (2009) Generation and analysis of expressed sequence tags from leaf and root of Withania somnifera (Ashwagandha). Mol Biol Rep 37:893–902. doi:10.1007/s11033-009-9696-y

    Article  PubMed  Google Scholar 

  • Singh BK, Gahoi R, Sonkar A (2010) A quality assessment and phytochemical screening of selected region of Withania somnifera Dunal. Int J Pharmaceut Sci Res 1:73–77 (icid: 913296)

    CAS  Google Scholar 

  • Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43. doi:10.1016/S0022-5320(69)90033-1

    Article  CAS  PubMed  Google Scholar 

  • Turner GW, Gershenzon J, Croteau RB (2000) Development of peltate glandular trichomes of peppermint. Plant Physiol 124:665–679. doi:10.1104/pp.124.2.665

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Uddin Q, Samiulla L, Singh VK, Jamil S (2012) Phytochemical and pharmacological profile of Withania somnifera Dunal: a review. J Appl Pharmaceut Sci 2:170–175

    Google Scholar 

  • van Wyk BE (2008) A broad review of commercially important southern African medicinal plants. J Ethnopharmacol 119:342–355. doi:10.1016/j.jep.2008.05.029

    Article  PubMed  Google Scholar 

  • Wagner GJ, Wang E, Shepherd RW (2004) New approaches for studying and exploiting an old protuberance, the plant trichome. Ann Bot 93:3–11. doi:10.1093/aob/mch011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Werker E (2000) Trichome diversity and development. Adv Bot Res 31:1–35. doi:10.1016/S0065-2296(00)31005-9

    Article  Google Scholar 

  • Werker E, Putievsky E, Ravid U, Dudai N, Katzir I (1993) Glandular hairs and essential oil in developing leaves of Ocimum basilicum L. (Lamiaceae). Ann Bot 71:43–50. doi:10.1006/anbo.1993.1005

    Article  CAS  Google Scholar 

  • Winter N, Kollwig G, Zhang S, Kragler F (2007) MPB2C, a microtubule-associated protein, regulates non-cell-anatomy of the homeodomain protein KNOTTED. Am Soc Plant Biol 19:3001–3018. doi:10.1105/tpc.107.044354

    CAS  Google Scholar 

  • Wink M (1998) Alkaloids: biochemistry, ecology, and medicinal application. In: MF Roberts, M Wink. Plenum Press, New York. pp. 265–300

  • Yan A, Pan J, An L, Gan Y, Feng H (2012) The responses of trichome mutants to enhanced ultraviolet-B radiation in Arabidopsis thaliana. J Photochem Photobiol B Biol 113:29–35 (pmid: 22647943)

    Article  CAS  Google Scholar 

  • Yu H, Kolwalski SP, Steffens JC (1992) Comparison of polyphenol oxidase expression in glandular trichomes of Solanum and Lycopersicon species. Plant Physiol 100:1885–1890. doi:10.1104/pp.100.4.1885

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Preyan Arumugam, Kashmira Raghu and Ashlin Munsamy for research assistance and aiding with histochemical preparation. Drs S. Gairola and C.T. Sadashiva are thanked for editing the manuscript and assistance with phytochemical and TLC studies, respectively. Funding from the National Research Foundation (NRF) is also gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Prelina Munien or Yougasphree Naidoo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munien, P., Naidoo, Y. & Naidoo, G. Micromorphology, histochemistry and ultrastructure of the foliar trichomes of Withania somnifera (L.) Dunal (Solanaceae). Planta 242, 1107–1122 (2015). https://doi.org/10.1007/s00425-015-2341-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-015-2341-1

Keywords

Navigation