Skip to main content
Log in

Silicon in vascular plants: uptake, transport and its influence on mineral stress under acidic conditions

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

So far, considerable advances have been achieved in understanding the mechanisms of Si uptake and transport in vascular plants. This review presents a comprehensive update about this issue, but also provides the new insights into the role of Si against mineral stresses that occur in acid soils. Such information could be helpful to understand both the differential Si uptake ability as well as the benefits of this mineral element on plants grown under acidic conditions.

Silicon (Si) has been widely recognized as a beneficial element for many plant species, especially under stress conditions. In the last few years, great efforts have been made to elucidate the mechanisms involved in uptake and transport of Si by vascular plants and recently, different Si transporters have been identified. Several researches indicate that Si can alleviate various mineral stresses in plants growing under acidic conditions, including aluminium (Al) and manganese (Mn) toxicities as well as phosphorus (P) deficiency all of which are highly detrimental to crop production. This review presents recent findings concerning the influence of uptake and transport of Si on mineral stress under acidic conditions because a knowledge of this interaction provides the basis for understanding the role of Si in mitigating mineral stress in acid soils. Currently, only four Si transporters have been identified and there is little information concerning the response of Si transporters under stress conditions. More investigations are therefore needed to establish whether there is a relationship between Si transporters and the benefits of Si to plants subjected to mineral stress. Evidence presented suggests that Si supply and its subsequent accumulation in plant tissues could be exploited as a strategy to improve crop productivity on acid soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahmad R, Zaheer SH, Ismail S (1992) Role of silicon in salt tolerance of wheat (Tritium aestivum L.). Plant Sci 85:43–50

    CAS  Google Scholar 

  • Arnon DI, Stout PR (1939) The essentiality of certain elements in minute quantity for plant with special reference to copper. Plant Physiol 14:371–375

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arunakumara K, Walpol B, Yoon MH (2013) Aluminum toxicity and tolerance mechanism in cereals and legumes - A review. J Korean Soc Appl Bi 56:1–9

    Google Scholar 

  • Barceló J, Guevara P, Poschenrieder Ch (1993) Silicon amelioration of aluminium toxicity in teosinte (Zea mays L. ssp. mexicana). Plant Soil 154:249–255

    Google Scholar 

  • Baylis AD, Gragopoulou C, Davidson KJ, Birchall JD (1994) Effects of silicon on the toxicity of aluminum to soybean. Commun Soil Sci Plan 25:537–546

    CAS  Google Scholar 

  • Bokor B, Bokorová S, Ondos S, Svubová R, Lukacova Z, Hyblova M, Szemes T, Lux A (2014) Ionome and expression level of Si transporter genes (Lsi1, Lsi2, and Lsi6) affected by Zn and Si interaction in maize. Environ Sci Pollut Res Int. doi:10.1007/s11356-014-3876-6

    PubMed  Google Scholar 

  • Bolan NS, Hedley MJ, White RE (1991) Processes of soil acidification during nitrogen cycling with emphasis on legume based pastures. Plant Soil 134:53–63

    CAS  Google Scholar 

  • Bolan N, Adriano D, Curtin D (2003) Soil acidification and liming interactions with nutrient and heavy metal transformation and bioavailability. Adv Agron 1:215–272

    Google Scholar 

  • Broadley M, Brown P, Cakmak I, Ma JF, Rengel Z, Zhao F (2012) Beneficial Elements. In: Marschner P (ed) Marschner’s Mineral Nutrition of Higher Plants, 3rd edn. Elsevier, Amsterdam, pp 249–269

    Google Scholar 

  • Cartes P, McManus M, Wulff-Zottele C, Gutiérrez A, Mora ML (2012) Describing differential superoxide dismutase expression under aluminium stress in ryegrass cultivars at the short term. Plant Soil 350:353–363

    CAS  Google Scholar 

  • Chandler-Ezell K, Pearsall D, Zeidler J (2006) Root and tuber phytoliths and starch grains document manioc (Manihot esculenta), arrowroot (Maranta arundinacea), and llerén (Calathea sp.) at the Real Alto site. Ecuador. Econ Bot 60:103–120

    Google Scholar 

  • Chen CH, Lewin J (1969) Silicon as a nutrient element for Equisetum arvense. Can J Botany 47:125–131

    CAS  Google Scholar 

  • Cheong YWY, Chan PY (1973) Incorporation of P32 in phosphate esters of the sugar cane plant and the effect of Si and Al on the distribution of these esters. Plant Soil 38:113–123

    CAS  Google Scholar 

  • Chiba Y, Mitani N, Yamaji N, Ma JF (2009) HvLsi1 is a silicon influx transporter in barley. Plant J 57:810–818

    CAS  PubMed  Google Scholar 

  • Cocker KM, Evans DE, Hodson MJ (1998a) The amelioration of aluminium toxicity by silicon in higher plants: solution chemistry or an in plants mechanism? Physiol Plantarum 104:608–614

    CAS  Google Scholar 

  • Cocker KM, Evans DE, Hodson MJ (1998b) The amelioration of aluminium toxicity by silicon in wheat (Triticum aestivum L.): malate exudation as evidence for an in planta mechanism. Planta 204:318–323

    CAS  Google Scholar 

  • Cornelis JT, Delvaux B, Georg RB, Lucas Y, Ranger J, Opfergelt S (2011) Tracing the origin of dissolved silicon transferred from various soil-plant systems towards rivers: a review. Biogeosciences 8:89–112

    CAS  Google Scholar 

  • Corrales I, Poschenrieder C, Barceló J (1997) Influence of silicon pretreatment on aluminium toxicity in maize roots. Plant Soil 190:203–209

    CAS  Google Scholar 

  • Currie HA, Perry CC (2007) Silica in plants: biological, biochemical and chemical studies. Ann Bot-London 100:1383–1389

    CAS  Google Scholar 

  • Darkó E, Ambrusa H, Stefanovits- Banyai E, Fodor J, Bakos F, Barnabás B (2004) Aluminium toxicity, Al tolerance and oxidative stress in an Al- sensitive wheat genotype and in Al- tolerant lines developed by in vitro microspore selection. Plant Sci 163(583):591

    Google Scholar 

  • Datnoff LE, Deren CW, Snyder GH (1997) Silicon fertilization for disease management of rice in Florida. Crop Prot 16:525–531

    CAS  Google Scholar 

  • De N, Datta SH (2007) Relationship between phosphorus sorption and soil acidity as affected by bicarbonate and silicate ions. Commun Soil Sci Plan 38:679–694

    CAS  Google Scholar 

  • Delhaize E, Ryan PR (1995) Aluminium toxicity and tolerance in plants. Plant Physiol 107:315–321

    CAS  PubMed Central  PubMed  Google Scholar 

  • Deren CW (2001) Plant genotype, silicon concentration and silicon-related responses. In: Datnoff LE, Snyder GH, Korndorfer GH (eds) Silicon in Agriculture. Elsevier Science BV, Amsterdam, pp 149–158

    Google Scholar 

  • Deshmukh R, Vivancos J, Guérin V, Sonah H, Labbé C, Belzile F, Bélanger R (2013) Identification and functional characterization of silicon transporters in soybean using comparative genomics of major intrinsic proteins in Arabidopsis and rice. Plant Mol Biol 83:303–315

    CAS  PubMed  Google Scholar 

  • Dietzel M (2000) Dissolution of silicates and the stability of polysilicic acid. Geochim Cosmochim Ac 64:3275–3281

    CAS  Google Scholar 

  • Dragisic Maksimovic J, Bogdanovic J, Maksimovic V, Nikolic M (2007) Silicon modulates the metabolism and utilization of phenolic compounds in cucumber (Cucumis sativus L.) grown at excess manganese. J Plant Nutr Soil Sci 170:739–744

    Google Scholar 

  • Dragisic Maksimovic J, Mojovic M, Maksimovic V, Römheld V, Nikolic M (2012) Silicon ameliorates manganese toxicity in cucumber by decreasing hydroxyl radical accumulation in the leaf apoplast. J Exp Bot 63:2411–2420

    CAS  PubMed  Google Scholar 

  • El-Jaoual T, Cox D (1998) Manganese toxicity in plants. J Plant Nutr 21:353–386

    CAS  Google Scholar 

  • Epstein E (1999) Silicon. Annu Rev Plant Phys 50:641–664

    CAS  Google Scholar 

  • Fang CX, Wang QS, Yu Y, Li QM, Zhang HL, Wu XC, Chen T, Lin WX (2011) Suppression and overexpression of Lsi1 induce differential gene expression in rice under ultraviolet radiation. Plant Growth Regul 65:1–10

    CAS  Google Scholar 

  • Fauteux F, Rémus-Borel W, Menzies J, Bélanger R (2005) Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiol Lett 249:1–6

    CAS  PubMed  Google Scholar 

  • Feng J, Shi Q, Wang X (2009) Effects of exogenous silicon on photosynthetic capacity and antioxidant enzyme activities in chloroplast of cucumber seedlings under excess manganese. Agric Sci China 8:40–50

    CAS  Google Scholar 

  • Fisher RA (1929) A preliminary note on the effect of sodium silicate in increasing the yield of barley. J Agr Sci 19:132–139

    CAS  Google Scholar 

  • Foy CD (1984) Physiological effects of hydrogen, aluminum, and manganese toxicity in acid soils. In: Adams F (ed) Soil Acidity and liming. American Society of Agronomy, Madison, Wisconsin, pp 57–97

    Google Scholar 

  • Foy CD (1992) Soil chemical factors limiting plant root growth. Adv Soil Sci 19:97–149

    CAS  Google Scholar 

  • Führs H, Götze S, Specht A, Erban A, Gallien S, Heintz D, Van Dorsselaer A, Kopka J, Braun HP, Horst WJ (2009) Characterization of leaf apoplastic peroxidases and metabolites in Vigna unguiculata in response to toxic manganese supply and silicon. J Exp Bot 60:1663–1678

    PubMed Central  PubMed  Google Scholar 

  • Galvez L, Clar RB, Gourley LM, Maranville JW (1989) Effects of silicon on mineral composition of sorghum grown with excess manganese. J Plant Nutr 12:547–561

    CAS  Google Scholar 

  • Gong H, Zhu X, Chen K, Wang S, Zhang C (2005) Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci 169:313–321

    CAS  Google Scholar 

  • Goodwin SB, Sutter TR (2009) Microarray analysis of Arabidopsis genome response to aluminium stress. Biol Plantarum 53:85–99

    CAS  Google Scholar 

  • Grégoire C, Rémus-Borel W, Vivancos J, Labbé C, Belzile F, Bélanger RR (2012) Discovery of a multigene family of aquaporin silicon transporters in the primitive plant Equisetum arvense. Plant J 72:320–330

    PubMed  Google Scholar 

  • Guntzer F, Keller C, Meunier JD (2012) Benefits of plant silicon for crops: a review. Agron Sustain Dev 32:201–213

    Google Scholar 

  • Hammond KE, Evans DE, Hodson MJ (1995) Aluminium/silicon interactions in barley (Hordeum vulgare L.) seedlings. Plant Soil 173:89–95

    CAS  Google Scholar 

  • Hartono A (2008) The effect of calcium silicate on the phosphorus sorption characteristics of Andisols Lembang West Java. Jurnal Tanah dan Lingkungan 10:14–19

    Google Scholar 

  • Hattori T, Inanaga S, Araki H, An P, Morita S, Luxová M, Lux A (2005) Application of silicon enhanced drought tolerance in Sorghum bicolor. Physiol Plantarum 123:459–466

    CAS  Google Scholar 

  • Henriet C, Draye X, Oppitz I, Swennen R, Delvaux B (2006) Effects, distribution and uptake of silicon in banana (Musa spp.) under controlled conditions. Plant Soil 287:359–374

    CAS  Google Scholar 

  • Hernandez-Apaolaza L (2014) Can silicon partially alleviate micronutrient deficiency in plants? A review. Planta 240:447–458

    CAS  PubMed  Google Scholar 

  • Hildebrand M, Volcani BE, Gassmann W, Schroeder JI (1997) A gene family of silicon transporters. Nature 385:688–689

    CAS  PubMed  Google Scholar 

  • Hildebrand M, Dahlin K, Volcani BE (1998) Characterization of a silicon transporter gene family in Cylindrotheca fusiformis: sequences, expression analysis, and identification of homologs in other diatoms. Mol Gen Genet 260:480–486

    CAS  PubMed  Google Scholar 

  • Hingston FJ, Raupach M (1967) The reaction between monosilicic acid and aluminium hydroxide. I. Kinetics of adsorption of silicic acid by aluminium hydroxide. Aust J Soil Res 5:295–309

    CAS  Google Scholar 

  • Hodson MJ, Sangster AG (1988) Silica deposition in the inflorescence bracts of wheat (Triticum aestivum L.) I. Scanning electron microscopy and light microscopy. Can J Bot 66:829–838

    Google Scholar 

  • Hodson MJ, Sangster AG (1989) X-ray microanalysis of the seminal root of Sorghum bicolor (L.) Moench. with particular reference to silicon. Ann Bot 64:659–667

    Google Scholar 

  • Hodson MJ, Sangster AG (1993) The interaction between silicon and aluminium in Sorghum bicolor (L.) Moench: growth analysis and X-ray microanalysis. Ann Bot-London 72:389–400

    CAS  Google Scholar 

  • Hodson MJ, Sangster AG (1999) Aluminium/silicon interactions in conifers. J Inorg Biochem 76:89–98

    CAS  Google Scholar 

  • Hodson MJ, White PJ, Mead A, Broadley MR (2005) Phylogenetic variation in the silicon composition of plants. Ann Bot-London 96:1027–1046

    CAS  Google Scholar 

  • Horiguchi T (1988) Mechanism of manganese toxicity and tolerance of plants. IV. Effects of silicon on alleviation of manganese toxicity of rice plants. Soil Sci Plant Nutr 34:65–73

    CAS  Google Scholar 

  • Horiguchi T, Morita S (1987) Mechanism of manganese toxicity and tolerance of plants. VI. Effect of silicon on alleviation of manganese toxicity of barley. J Plant Nutr 10:2299–2310

    CAS  Google Scholar 

  • Horst WJ, Marschner H (1978) Effect of silicon on manganese tolerance of bean plants (Phaseolus vulgaris L.). Plant Soil 50:287–303

    CAS  Google Scholar 

  • Horst WJ, Fecht M, Naumann A, Wissemeier AH, Maier P (1999) Physiology of manganese toxicity and tolerance in Vignaun guiculata (L.) Walp. J Plant Nutr Soil Sc 162:263–274

    CAS  Google Scholar 

  • Horst WJ, Wang Y, Eticha D (2010) The role of the apoplast in Al induced inhibition of root elongation and in Al resistance of plants: a review. Ann Bot-London 106:185–197

    CAS  Google Scholar 

  • Iwasaki K, Matsumura A (1999) Effect of silicon on alleviation of manganese toxicity in pumpkin (Cucurbita moschata Duch cv. Shintosa). Soil Sci Plant Nutr 45:909–920

    CAS  Google Scholar 

  • Iwasaki K, Maier P, Fecht M, Horst WJ (2002) Influence of the apoplastic silicon concentration on the manganese tolerance of cowpea (Vigna unguiculata L. Walp.). J Plant Physiol 136:3762–3770

    Google Scholar 

  • Jarvis SC (1987) The uptake and transport of silicon by perennial ryegrass and wheat. Plant Soil 97:429–437

    CAS  Google Scholar 

  • Kidd PS, Llugany M, Poschenrider C, Gunse B, Barcelo J (2001) The role of roots exudates in aluminium resistence and silicon- induced amelioration of aluminium toxicity in three varities of maize (Zea mays L.). J Exp Bot 52:1339–1352

    CAS  PubMed  Google Scholar 

  • Kim YH, Khan AL, Kim DH, Lee SY (2014) Silicon mitigates heavy metal stress by regulating P-type heavy metal ATPases, Oryza sativa low silicon genes, and endogenous phytohormones. BMC Plant Biol 14:13

    PubMed Central  PubMed  Google Scholar 

  • Knight CTG, Kinrade SD (2001) A primer on the aqueous chemistry of silicon. In: Datnoff LE, Snyder GH, Korndorfer GH (eds) Silicon in Agriculture. Elsevier Science BV, Amsterdam, pp 57–84

    Google Scholar 

  • Kochian LV, Hoekenga OA, Piñeros MA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol 55:459–493

    CAS  PubMed  Google Scholar 

  • Kostic-Kravljanac LM (2015) Modulation of the processes in wheat rhizosphere in responses to the amendments of soils degraded by mining waste. PhD Thesis, University of Belgrade, (in Serbian with an abstract in English)

  • Lee YB, Kim PJ (2007) Reduction of phosphate adsorption by ion competition with silicate in soil. Korean J Environ Agric 26:286–293

    Google Scholar 

  • Lee YB, Hoon C, Hwang JY, Lee IB, Kim PJ (2004) Enhancement of phosphate desorption by silicate in soils with salt accumulation. Soil Sci Plant Nutr 50:493–499

    CAS  Google Scholar 

  • Li P, Song A, Li Z, Fan F, Liang Y (2012) Silicon ameliorates manganese toxicity by regulating manganese transport and antioxidant reactions in rice (Oryza sativa L.). Plant Soil 354:404–419

    Google Scholar 

  • Liang Y, Si J, Römheld V (2005) Silicon uptake and transport is an active process in Cucumis sativus L. New Phytol 167:797–804

    CAS  PubMed  Google Scholar 

  • Liang Y, Hua H, Zhu YG, Zhang J, Cheng C, Römheld V (2006) Importance of plant species and external silicon concentration to active silicon uptake and transport. New Phytol 172:63–72

    CAS  PubMed  Google Scholar 

  • Liang Y, Sun W, Zhu YG, Christie P (2007) Mechanisms of silicon mediated alleviation of abiotic stresses in higher plants: a review. Environ Pollut 147:422–428

    CAS  PubMed  Google Scholar 

  • Liang Y, Nikolic M, Bélanger R, Gong H, Song A (2015) Silicon in Agriculture. Springer, Dordrecht

    Google Scholar 

  • Likhoshway YV, Masyukova YA, Sherbakova TA, Petrova DP, Grachev MA (2006) Detection of the gene responsible for silicic acid transport in Chrysophycean algae. Dokl Biol Sci 408:256–260

    PubMed  Google Scholar 

  • Lux A, Luxová M, Morita S, Abe J, Inanaga S (1999) Endodermal silicification in developing seminal roots of lowland and upland cultivars of rice (Oryza sativa L.). Can J Bot 77:955–960

    CAS  Google Scholar 

  • Ma JF (2004) Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci Plant Nutr 50:11–18

    CAS  Google Scholar 

  • Ma JF, Takahashi E (1990a) Effect of silicon on the growth and phosphorus uptake of rice. Plant Soil 126:115–119

    CAS  Google Scholar 

  • Ma JF, Takahashi E (1990b) The effect of silicic acid on rice in P-deficient soil. Plant Soil 126:121–125

    CAS  Google Scholar 

  • Ma JF, Takahashi E (1991) Effect of silicate on phosphate availability for rice in P-deficient soil. Plant Soil 133:151–155

    CAS  Google Scholar 

  • Ma JF, Takahashi E (2002) Soil, fertilizer, and plant silicon research in Japan. Elsevier Science BV, Amsterdam

    Google Scholar 

  • Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11:392–397

    CAS  PubMed  Google Scholar 

  • Ma JF, Sasaki M, Matsumoto H (1997) Al-induced inhibition of root elongation in corn, Zea mays L. is overcome by Si addition. Plant Soil 188:171–176

    CAS  Google Scholar 

  • Ma JF, Tamai K, Ichii M, Wu K (2002) A rice mutant defective in active Si uptake. Plant Physiol 130:2111–2117

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ma JF, Higashitani A, Sato K, Takeda K (2003) Genotypic variation in silicon concentration of barley grain. Plant Soil 249:383–387

    CAS  Google Scholar 

  • Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440:688–691

    CAS  Google Scholar 

  • Ma JF, Yamaji N, Tamai K, Mitani N (2007a) Genotypic difference in silicon uptake and expression of silicon transporter genes in rice. Plant Physiol 145:919–924

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T, Katsuhara M, Yano M (2007b) An efflux transporter of silicon in rice. Nature 448:209–212

    CAS  PubMed  Google Scholar 

  • Ma JF, Yamaji N, Mitani N (2011) Transport of silicon from roots to panicles in plants. Proc Jpn Acad Ser B 87:377–385

    CAS  Google Scholar 

  • Marron AO, Alston MJ, Heavens D, Akam M, Caccamo M, Holland PW, Walker G (2013) A family of diatom-like silicon transporters in the siliceous loricate choanoflagellates. Proc R Soc B 280:20122543

    PubMed Central  PubMed  Google Scholar 

  • Marschner H (1997) Mineral Nutrition of Higher Plants, 2nd edn. Academic Press, London

    Google Scholar 

  • Mengel K, Kirkby EA (2001) Principles of Plant Nutrition. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Mitani N, Ma JF (2005) Uptake system of silicon in different plant species. J Exp Bot 56:1255–1261

    CAS  PubMed  Google Scholar 

  • Mitani N, Yamaji N, Ma JF (2008) Characterization of substrate specificity of a rice silicon transporter, Lsi1. Pflügers Archiv 456:679–686

    CAS  PubMed  Google Scholar 

  • Mitani N, Chiba Y, Yamaji N, Ma JF (2009a) Identification and characterization of maize and barley Lsi2-like silicon efflux transporters reveals a distinct silicon uptake system from that in rice. Plant Cell 21:2133–2142

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mitani N, Yamaji N, Ma JF (2009b) Identification of maize silicon influx transporters. Plant Cell Physiol 50:5–12

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mitani N, Yamaji N, Ago Y, Iwasaki K, Ma JF (2011a) Isolation and functional characterization of an influx silicon transporter in two pumpkin cultivars contrasting in silicon accumulation. Plant J 66:231–240

    CAS  PubMed  Google Scholar 

  • Mitani N, Yamaji N, Ma JF (2011b) Silicon efflux transporters isolated from two pumpkin cultivars contrasting in Si uptake. Plant Signal Behav 6:991–994

    Google Scholar 

  • Mitani N, Yamaji N, Zhao FJ, Ma JF (2011c) The aromatic/arginine selectivity filter of NIP aquaporins plays a critical role in substrate selectivity for silicon, boron, and arsenic. J Exp Bot 62:4391–4398

    Google Scholar 

  • Montpetit J, Vivancos J, Mitani N, Yamaji N, Rémus-Borel W, Belzile F, Ma JF, Bélanger RR (2012) Cloning, functional characterization and heterologous expression of TaLsi1, a wheat silicon transporter gene. Plant Mol Bio 79:35–46

    CAS  Google Scholar 

  • Mora ML, Baeza G, Pizarro C, Demanet R (1999) Effect of calcitic and dolomitic lime on physicochemical properties of a Chilean Andisol. Commun Soil Sci Plan 30:427–439

    CAS  Google Scholar 

  • Mora ML, Alfaro MA, Jarvis SC, Demanet R, Cartes P (2006) Soil aluminium availability in Andisols of Southern Chile and its effect on forage production and animal metabolism. Soil Use Manage 22:95–101

    Google Scholar 

  • Mora ML, Rosas A, Ribera A, Rengel Z (2009) Differential tolerance to Mn toxicity in perennial ryegrass genotypes: involvement of antioxidative enzymes and root exudation of carboxylates. Plant Soil 320:79–89

    CAS  Google Scholar 

  • Nanayakkara UN, Uddin W, Datnoff L (2008) Application of silicon sources increases silicon accumulation in perennial ryegrass turf on two soil types. Plant Soil 303:83–94

    CAS  Google Scholar 

  • Neumann D, De Figueiredo C (2002) A novel mechanism of silicon uptake. Protoplasma 220:59–67

    CAS  PubMed  Google Scholar 

  • Nikolic M, Nikolic N, Liang Y, Kirkby EA, Römheld V (2007) Germanium-68 as an adequate tracer for silicon transport in plants. Characterization of silicon uptake in different crop species. Plant Physiol 143:495–503

    CAS  PubMed Central  PubMed  Google Scholar 

  • Obihara CH, Russell EW (1972) Specific adsorption of silicate and phosphate by soils. J Soil Sci 23:105–117

    CAS  Google Scholar 

  • Owino-Gerroh C, Gascho GJ (2004) Effect of silicon on low pH soil phosphorus sorption and on uptake and growth of maize. Commun Soil Sci Plan 35:2369–2378

    CAS  Google Scholar 

  • Pardo MT, Guadalix ME (1990) Phosphate sorption in allophanic soils and release of sulphate, silicate and hydroxyl. J Soil Sci 41:607–608

    CAS  Google Scholar 

  • Parfitt RL (1978) Anion adsorption by soils and soil materials. Adv Agron 30:1–50

    CAS  Google Scholar 

  • Prabagar S, Hodson MJ, Evans DE (2011) Silicon amelioration of aluminium toxicity and cell death in suspension cultures of Norway spruce (Picea abies L. Karst.). Environ Exp Bot 70:266–276

    CAS  Google Scholar 

  • Prychid CJ, Rudall PJ, Gregory M (2004) Systematics and biology of silica bodies in monocotyledons. Bot Rev 69:377–440

    Google Scholar 

  • Rains DW, Epstein E, Zasoski RJ, Aslam M (2006) Active silicon uptake by wheat. Plant Soil 280:223–228

    CAS  Google Scholar 

  • Raven JA (2001) Silicon transport at the cell and tissue level. In: Datnoff LE, Snyder GH, Korndorfer GH (eds) Silicon in Agriculture. Elsevier Science BV, Amsterdam, pp 41–55

    Google Scholar 

  • Raven JA (2003) Cycling silicon- the role of accumulation in plants. New Phytol 158:419–430

    Google Scholar 

  • Rengel Z (2000) Uptake and transport of manganese in plants. In: Sigel A, Sigel H (eds) Metal Ions in Biological Systems. Marcel Dekker, New York, pp 57–87

    Google Scholar 

  • Ribera A, Inostroza-Blancheteau C, Cartes P, Rengel Z, Mora ML (2013) Early induction of Fe-SOD gene expression is involved in tolerance to Mn toxicity in perennial ryegrass. Plant Physiol Bioch 73:77–82

    Google Scholar 

  • Robson AD, Pitman MG (1983) Interactions between nutrients in higher plants. In: Läuchli A, Bieleski RL (eds) Encyclopedia of Plant Physiology. Springer-Verlag, Berlin 15: 147-180

  • Rogalla H, Römheld V (2002) Role of leaf apoplast in silicon-mediated manganese tolerance of Cucumis sativus L. Plant, Cell Environ 25:549–555

    CAS  Google Scholar 

  • Romero A, Munévar F, Cayón G (2011) Silicon and plant diseases. A Review. Agron Colomb 29:473–480

    Google Scholar 

  • Ryan PR, Delhaize E (2010) The convergent evolution of aluminium resistance in plants exploits a convenient currency. Funct Plant Biol 37:275–284

    CAS  Google Scholar 

  • Ryden JC, McLauchlin JR, Syers JK (1977) Mechanisms of phosphate sorption by soils and hydrous ferric oxide gel. J Soil Sci 28:72–92

    CAS  Google Scholar 

  • Schachtman DP, Reid RJ, Ayling SM (1998) Phosphorus uptake by plants: from soil to cell. Plant Physiol 116:447–453

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schröder HC, Perović-Ottstadt S, Wiens M, Batel R, Müller IM, Müller WEG (2004) Silica transport in the demosponge Suberites domuncula: fluorescence emission analysis using the PDMPO probe and cloning of a potential transporter. Cell Tissue Res 316:271–280

    PubMed  Google Scholar 

  • Shahnaz G, Shekoofeh E, Kourosh D, Moohamadbagher B (2011) Interactive effects of silicon and aluminum on the malondialdehyde (MDA), proline, protein and phenolic compounds in Borago officinalis L. J Med Plants Res 5:5818–5827

    CAS  Google Scholar 

  • Shi Q, Bao Z, Zhu Z, He Y, Qian Q, Yu J (2005) Silicon mediated alleviation of Mn toxicity in Cucumis sativus in relation to activities of superoxide dismutase and ascorbate peroxidase. Phytochemistry 66:1551–1559

    CAS  PubMed  Google Scholar 

  • Singh VP, Tripathi DK, Kumar D, Chauhan DK (2011) Influence of exogenous silicon addition on aluminium tolerance in rice seedlings. Biol Trace Elem Res 144:1260–1274

    CAS  PubMed  Google Scholar 

  • Snyder GH (1991) Developed of a silicon test for Histosol-grown rice. Belle Glade EREC Research Report EV-1991-2. University of Florida, Belle Glade, USA, pp 29- 39

  • Takahashi E, Ma JF, Miyake Y (1990) The possibility of silicon as an essential element for higher plants. J Agr Food Chem 2:99–122

    CAS  Google Scholar 

  • Tamai K, Ma JF (2003) Characterization of silicon uptake by rice roots. New Phytol 158:431–436

    CAS  Google Scholar 

  • Van der Vorm PDJ (1980) Uptake of Si by five plant species, as influenced by variation in Si-supply. Plant Soil 56:153–156

    Google Scholar 

  • Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157:423–447

    CAS  Google Scholar 

  • Wallace IS, Roberts DM (2004) Homology modeling of representative subfamilies of Arabidopsis major intrinsic proteins. Classification based on the aromatic/arginine selectivity filter. Plant Physiol 135:1059–1068

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Y, Stass A, Horst WJ (2004) Apoplastic binding of aluminum is involved in silicon-induced amelioration of aluminum toxicity in maize. Plant Physiol 136:3762–3770

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wickramasinghe DB, Rowell DL (2006) The release of silicon from amorphous silica and rice straw in Sri Lankan soils. Biol Fert Soils 42:231–240

    CAS  Google Scholar 

  • Wu B, Beitz E (2007) Aquaporins with selectivity for unconventional permeants. Cell Mol Life Sci 64:2413–2421

    CAS  PubMed  Google Scholar 

  • Wu JW, Shi Y, Zhu YX, Wang YC, Gong HJ (2013) Mechanisms of enhanced heavy metal tolerance in plants by silicon: a review. Pedosphere 23:815–825

    CAS  Google Scholar 

  • Yamaji N, Ma JF (2007) Spatial distribution and temporal variation of the rice silicon transporter Lsi1. Plant Physiol 143:1306–1313

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamaji N, Ma JF (2009) A transporter at the node responsible for intervascular transfer of silicon in rice. Plant Cell 21:2878–2883

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamaji N, Ma JF (2011) Further characterization of a rice silicon efflux transporter, Lsi2. Soil Sci. Plant Nutr. 57:259–264

    CAS  Google Scholar 

  • Yamaji N, Mitani N, Ma JF (2008) A transporter regulating silicon distribution in rice shoots. Plant Cell 20:1381–1389

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamaji N, Chiba Y, Mitani N, Ma JF (2012) Functional characterization of a silicon transporter gene implicated in silicon distribution in barley. Plant Physiol 160:1491–1497

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamaji N, Sasaki A, Xia J, Yokosho K, Mitani N, Ma JF (2013) Role of node-located transporters in mineral distribution in rice. In: Proceeding of XVII International Plant Nutrition Colloquium: Plant nutrition for nutrient and food security, pp 129-130

  • Yamamoto Y, Kobayashi Y, Matsumoto H (2001) Lipid proxidation is an early symptom triggered by aluminium, but not the primary cause of elongation inhibition in pea roots. Plant Physiol 125:199–208

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu ZJ, Wei GQ, Li T, Qian QQ, Yu JQ (2004) Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Curcumis sativa L.). Plant Sci 167:527–533

    CAS  Google Scholar 

  • Zsoldos F, Vashegyi A, Pecsvaradi A, Bona L (2003) Influence of silicon on aluminium toxicity in common and durum wheats. Agronomie 23:349–354

    Google Scholar 

Download references

Acknowledgments

This work was supported by the FONDECYT project 1120901, CONICYT Doctoral Scholarship 21120704 and MEC project 80130066. Part work cited in this paper was supported by the Serbian Ministry of Education, Science and Technological Development Grant ON-173028 to M. N. We thank Dr. Ernest A. Kirkby (Faculty of Biology, University of Leeds, UK) for valuable comments and improvement of the English text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Cartes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pontigo, S., Ribera, A., Gianfreda, L. et al. Silicon in vascular plants: uptake, transport and its influence on mineral stress under acidic conditions. Planta 242, 23–37 (2015). https://doi.org/10.1007/s00425-015-2333-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-015-2333-1

Keywords

Navigation