Skip to main content
Log in

Unique miRNome during anthesis in drought-tolerant indica rice var. Nagina 22

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

An Erratum to this article was published on 16 May 2015

Abstract

Main conclusion

Drought-tolerant rice variety, Nagina 22 (N22), has a unique spikelet miRNome during anthesis stage drought as well as transition from heading to anthesis.

Molecular characterization of genetic diversity of rice is essential to understand the evolution and molecular basis of various agronomically important traits such as drought tolerance. miRNAs play an important role in regulating plant development as well as stress response such as drought. In this study, we characterized the yet unexplored dynamics of the spikelet miRNA population during developmental transition from ‘heading’ to ‘anthesis’ as well as anthesis stage drought stress in a drought-tolerant indica rice variety, N22. A significant proportion of miRNA population (~20 %) in N22 spikelets is modulated during transition from heading to anthesis indicating a unique miRNome at anthesis, a developmental stage highly sensitive to stress (drought/heat). Based on the analysis of degradome data, majority of differentially regulated miRNAs appear to regulate transcription factors, some of which are implicated in regulation of development and fertilization. Similarly, drought during anthesis leads to a global change in miRNA expression pattern including those which regulate ROS homeostasis. It was possible to identify several miRNAs that were not reported to be drought responsive in earlier studies. Interestingly, a significant proportion of the drought-regulated miRNAs co-localize within QTLs related to drought tolerance and associated traits. Comparison of the expression profiles between N22 and Pusa Basmati 1 (drought sensitive) identified miRNAs with variety-specific expression patterns during phase transition (miR164, miR396, miR812, and miR1881) as well as drought stress (miR1881) indicating an evolution of a distinct and variety-specific regulatory mechanism. The promoters of these miRNAs contain LREs (light-responsive elements) and are induced by dark treatment. It was also possible to identify 4 novel miRNAs including an intronic miRNA that was conserved in both rice varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

N22:

Nagina 22

PB1:

Pusa Basmati 1

DAF:

Days after fertilization

QTL:

Quantitative trait loci

ROS:

Reactive oxygen species

SNP:

Single nucleotide polymorphism

References

  • Akagi H, Nakamura A, Yokozeki-Misono Y et al (2004) Positional cloning of the rice Rf-1 gene, a restorer of BT-type cytoplasmic male sterility that encodes a mitochondria-targeting PPR protein. Theor Appl Genet 108:1449–1457

    Article  CAS  PubMed  Google Scholar 

  • Ambros V, Bartel B, Bartel DP et al (2003) A uniform system for microRNA annotation. RNA 9:277–279

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bachmair A, Novatchkova M, Potuschak T, Eisenhaber F (2001) Ubiquitylation in plants: a post-genomic look at a post-translational modification. Trends Plant Sci 6:463–470

    Article  CAS  PubMed  Google Scholar 

  • Barnabás B, Jäger K, Fehér A (2008) The effect of drought and heat stress on reproductive processes in cereals. Plant, Cell Environ 31:11–38

    Google Scholar 

  • Dai X, Zhao PX (2011) psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res 39:W155–W159. doi:10.1093/nar/gkr319

  • Dong Z, Han MH, Fedoroff N (2008) The RNA-binding proteins HYL1 and SE promote accurate in vitro processing of pri-miRNA by DCL1. Proc Nat Acad Sci USA 105:9970–9975

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fujioka T, Kaneko F, Kazama T et al (2008) Identification of small RNAs in late developmental stage of rice anthers. Genes Genet Syst 83:281–284

    Article  CAS  PubMed  Google Scholar 

  • Gorantla M, Babu PR, Lachagari VBR et al (2007) Identification of stress-responsive genes in an indica rice (Oryza sativa L.) using ESTs generated from drought-stressed seedlings. J Exp Bot 58:253–255

    Article  CAS  PubMed  Google Scholar 

  • Gramene database. http://pathway.gramene.org/gramene/ricecyc.shtml

  • Hayama R, Yokoi S, Tamaki S, Yano M, Shimamoto K (2003) Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature 422:719–722

    Article  CAS  PubMed  Google Scholar 

  • Indica Rice Database (IRDb). www.genomeindia.org/irdb

  • Itoh JI, Nonomura KI, Ikeda K et al (2005) Rice plant development: from zygote to spikelet. Plant Cell Physiol 46:23–47

    Article  CAS  PubMed  Google Scholar 

  • Jagadish SVK, Craufurd PQ, Wheeler TR (2007) High temperature stress and spikelet fertility in rice (Oryza sativa L.). J Exp Bot 58:1627–1635

    Article  CAS  PubMed  Google Scholar 

  • Jain M, Nijhawan A, Arora R, Agarwal P, Ray S, Sharma P, Kapoor S, Ak Tyagi, Khurana JP (2007) F-box porteins in rice. Genome-wide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress. Plant Physiol 143:1467–1483

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kikuchi K, Ueguchi-Tanaka M, Yoshida KT, Nagato Y, Matsuoka M, Hirano HY (2000) Molecular analysis of the NAC gene family in rice. Mol Gen Genet 262:1047–1051

    Article  CAS  PubMed  Google Scholar 

  • Kosarev P, Mayer KFX, Hardtke CS (2002) Evaluation and classification of RING-finger domains encoded by the Arabidopsis genome. Genome Biol 3:0016.1–0016.12

  • Lan L, Chen W, Lai Y et al (2004) Monitoring of gene expression profiles and isolation of candidate genes involved in pollination and fertilization in rice (Oryza sativa L.) with a 10 K cDNA microarray. Plant Mol Biol 54:471–487

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Kim M, Han J et al (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051–4060

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lenka SK, Katiyar A, Chinnusamy V, Bansal KC (2010) Comparative analysis of drought-responsive transcriptome in indica rice genotypes with contrasting drought tolerance. Plant Biotech J 9:315–327

    Article  Google Scholar 

  • Li YF, Zheng Y, Addo-Quaye C et al (2010) Transcriptome-wide identification of microRNA targets in rice. Plant J 62:742–759

    Article  CAS  PubMed  Google Scholar 

  • Li S, Liu M, Wang S, Deng Q, Zheng A, Liu H, Wang L, Zhu J, Li P (2012) Fine mapping of a dominant minute-grain gene, Mi3, in rice. Mol Breeding 30:1045–1051

    Article  CAS  Google Scholar 

  • Lister R, Chew O, Lee MN et al (2004) A transcriptomic and proteomic characterisation of the Arabidopsis mitochondrial protein import apparatus and its response to mitochondrial dysfunction. Plant Physiol 134:777–789

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Luo Y, Guo Z, Li L (2013) Evolutionary conservation of microRNA regulatory programs in plant flower development. Dev Biol 380:133–144

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Lv S, Zhang C, Yang C (2013) Histone deacetylases and their functions in plants. Plant Cell Rep 32:465–478

    Article  CAS  PubMed  Google Scholar 

  • Mallory AC, Vaucheret H (2006) Functions of microRNAs and related small RNAs in plants. Nat Genet 38:S31–S36

    Article  CAS  PubMed  Google Scholar 

  • Mallory AC, Dugas DV, Bartel DP, Bartel B (2004) MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Curr Biol 14:1035–1046

    Article  CAS  PubMed  Google Scholar 

  • Matsui T (2002) Rice (Oryza sativa L.) cultivars tolerant to high temperature at flowering: anther characteristics. Ann Bot 89:683–687

    Article  PubMed Central  PubMed  Google Scholar 

  • Meyers BC, Axtell MJ, Bartel B et al (2008) Criteria for annotation of plant microRNAs. Plant Cell 20:3186–3190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mutum RD, Balyan SC, Kansal S et al (2013) Evolution of variety-specific regulatory schema for expression of osa-miR408 in indica rice varieties under drought stress. FEBS J 280:1717–1730

    Article  CAS  PubMed  Google Scholar 

  • Peng T, Lv Q, Zhang J, Li J, Du Y, Zhao Q (2011) Differential expression of the microRNAs in superior and inferior spikelets in rice (Oryza sativa). J Exp Bot 62:4943–4954

    Article  CAS  PubMed  Google Scholar 

  • Peng H, Chun J, Ai TB et al (2012) MicroRNA profiles and their control of male gametophyte development in rice. Plant Mol Biol 80:85–102

    Article  CAS  PubMed  Google Scholar 

  • Peng T, Sun H, Du Y et al (2013) Characterization and expression patterns of microRNAs involved in rice grain filling. PLoS One 8:e54148. doi:10.1371/journal.pone.0054148

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pignochhi C, Foyer CH (2003) Apoplastic ascorbate metabolism and its role in the regulation of cell signaling. Curr Opin Plant Biol 6:379–389

    Article  Google Scholar 

  • Potocky M, Jones MA, Bezvoda R, Smirnoff N, Zarsky V (2007) Reactive oxygen species produced by NADPH oxidase are involved in pollen tube growth. New Phytol 174:742–751

    Article  CAS  PubMed  Google Scholar 

  • Rajagopalan R, Vaucheret H, Trejo J, Bartel DP (2006) A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 20:3407–3425

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reddy AR, Ramakrishna W, Sekhar AC et al (2002) Novel genes are enriched in normalized cDNA libraries from drought-stressed seedlings of rice. Genome 211:204–211

    Article  Google Scholar 

  • Reddy CS, Babu AP, Swamy BPM, Kaladhar K, Sarla N (2009) ISSR markers based on GA and AG repeats reveal genetic relationship among rice varieties tolerant to drought, flood, or salinity. J Zhejiang Univ Sci B 10:133–141

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rice Genome Annotation Project. http://rice.plantbiology.msu.edu/

  • Schmitz-Linneweber C, Small I (2008) Pentatricopeptide repeat proteins: a socket set for organelle gene expression. Trends Plant Sci 13:663–670

    Article  CAS  PubMed  Google Scholar 

  • Selote DS, Khanna-Chopra R (2004) Drought-induced spikelet fertility is associated with an inefficient antioxidant defense in rice panicles. Physiol Plant 121:462–471

    Article  CAS  Google Scholar 

  • Shah F, Huang J, Cui K et al (2011) Impact of high temperature stress on rice plant and its traits related to tolerance. J Agric Sci 149:545–556

    Article  CAS  Google Scholar 

  • Shen J, Xie K, Xiong L (2010) Global expression profiling of rice microRNAs by one-tube stem-loop reverse transcription quantitative PCR revealed important roles of microRNAs in abiotic stress responses. Mol Genet Genomics 284:477–488

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Miller G, Morales J, Shulaev V, Torres MA, Mittler R (2011) Respiratory burst oxidases: the engines of ROS signaling. Curr Opin Plant Biol 14:691–699

    Article  CAS  PubMed  Google Scholar 

  • The UNAFold Web Server. http://mfold.rna.albany.edu/

  • Tsuji H, Taoka K, Shimamoto K (2011) Regulation of flowering in rice: two florigen genes, a complex gene network, and natural variation. Curr Opin Plant Biol 14:45–52

    Article  CAS  PubMed  Google Scholar 

  • Wang JW, Benjamin C, Weigel D (2009) miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 138:738–749

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Bai X, Yan C, Gui Y, Wei X, Zhu Q-H, Guo L, Fan L (2012) Genomic dissection of small RNAs in wild rice (Oryza rufipogon): lessons for rice domestication. New Phytol 196:914–925

    Article  CAS  PubMed  Google Scholar 

  • Wei LQ, Yan LF, Wang T (2011) Deep sequencing on genome-wide scale reveals the unique composition and expression patterns of microRNAs in developing pollen of Oryza sativa. Genome Biol 12:R53

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu L, Zhang Q, Zhou H, Ni F, Wu X, Qi Y (2009) Rice microRNA effector complexes and targets. Plant Cell 21:3421–3435

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yano M, Kojima S, Takahashi Y, Lin H, Sasaki T (2001) Genetic control of flowering time in rice, a short-day plant. Plant Physiol 127:1425–1429

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ye C, Argayoso MA, Edilberto DR et al (2012) Mapping QTL for heat tolerance at flowering stage in rice using SNP markers. Plant Breeding 131:33–41

    Article  CAS  Google Scholar 

  • Yi R, Zhu Z, Hu J, Qian Q, Dai J, Ding Y (2013) Identification and expression analysis of microRNAs at grain filling stage in rice via deep sequencing. PLoS One. doi:10.1371/journal.pone.0057863

    Google Scholar 

  • Yoshida S, Satake T, Mackill DS (1981) High temperature stress in rice. IRRI Research Paper Series 67

  • Zhang B, Pan X, Stellwag EJ (2008) Identification of soybean microRNAs and their targets. Planta 229:161–182

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Liu Y, Liu Z, Kong D, Duan M, Luo L (2010a) Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa. J Exp Bot 61:4157–4168

    Article  CAS  PubMed  Google Scholar 

  • Zhou M, Gu L, Li P, Song X, Wei L, Chen Z, Cao X (2010b) Degradome sequencing reveals endogenous small RNA targets in rice (Oryza sativa L. ssp. indica). Front Biol 5:67–90

    Article  CAS  Google Scholar 

  • Zhu QH, Spriggs A, Matthew L et al (2008) A diverse set of microRNAs and microRNA-like small RNAs in developing rice grains. Genome Res 18:1456–1465

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the funds from Department of Biotechnology, Government of India and the ‘Scheme to strengthen R&D Doctoral Research program’ of Univ. of Delhi, New Delhi, India. For fellowship, SK acknowledges CSIR (Council of Scientific and Industrial Research), MRD acknowledges UGC (University Grants Commission), and SCB acknowledges University of Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saurabh Raghuvanshi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

425_2015_2279_MOESM1_ESM.pdf

Supplementary Fig. S1 Pictorial representation of the miRNA dynamics in the spikelets at heading, and anthesis stage of N22 (PDF 42 kb)

425_2015_2279_MOESM2_ESM.pdf

Supplementary Fig. S2 K-means clustering of miRNAs known during the male gametophytic development stages (UNM: Uninucleate microspore; BCP: Bicellular Pollen; TCP: Tricellular pollen), heading, anthesis and grain filling stages (5DAF: 5 days after fertilization, 7DAF: 7 days after fertilization, 12DAF: 12 days after fertilization, 17DAF: 17 days after fertilization) (PDF 1032 kb)

425_2015_2279_MOESM3_ESM.pdf

Supplementary Fig. S3 Alignment of promoter miR164a,b,f; miR396a,b; miR1881 and miR812f in 4 different indica varieties, i.e. Nagina-22, Vandana, Pusa Basmati-1 and IR64 with respect to Japonica variety Nipponbare. The identical sequence is depicted as dots while SNPs at specific positions have been shown (PDF 2395 kb)

425_2015_2279_MOESM4_ESM.pdf

Supplementary Fig. S4 Line representation of the promoters (2 kb upstream of precursor start site) of the representative members of the miRNA families under study. The scale represents position in base-pair with respect to precursor start site (PDF 135 kb)

Supplementary Table S1 Names and sequences of primers used for real-time profiling and cDNA synthesis (XLSX 10 kb)

425_2015_2279_MOESM6_ESM.xlsx

Supplementary Table S2 Normalized tag density of miRNAs identified in the different small RNA libraries of N22 (XLSX 57 kb)

425_2015_2279_MOESM7_ESM.xlsx

Supplementary Table S3 Analysis of targets of all the miRNAs (of heading and anthesis) identified as per the degradome data analysis (XLSX 117 kb)

425_2015_2279_MOESM8_ESM.xlsx

Supplementary Table S4 Compilation of the Gene Ontology IDs of all the targets listed in Table. S3 collected from RGAP database (XLSX 68 kb)

425_2015_2279_MOESM9_ESM.xlsx

Supplementary Table S5 Summarization of data of novel miRNAs. The data includes normalized tag densities in different small RNA libraries as well as target genes based on the degradome tags. The significant targets discussed in text have been highlighted in green (XLSX 51 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kansal, S., Devi, R.M., Balyan, S.C. et al. Unique miRNome during anthesis in drought-tolerant indica rice var. Nagina 22. Planta 241, 1543–1559 (2015). https://doi.org/10.1007/s00425-015-2279-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-015-2279-3

Keywords

Navigation