Skip to main content
Log in

Functional characterization of an anthocyanidin reductase gene from the fibers of upland cotton (Gossypium hirsutum)

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Metabolic profiling, gene cloning, enzymatic analysis, ectopic expression, and gene silencing experiments demonstrate that the anthocyanidin reductase (ANR) pathway is involved in the biosynthesis of proanthocyanidins in upland cotton.

Proanthocyanidins (PAs) are oligomeric or polymeric flavan-3-ols, however, the biosynthetic pathway of PAs in cotton remains to be elucidated. Here, we report on an anthocyanidin reductase (ANR) gene from cotton fibers and the ANR pathway of PAs. Phytochemical analysis demonstrated that leaves, stems, roots, and early developing fibers produced PAs and their monomers, including (−)-epicatechin, (−)-catechin, (−)-epigallocatechin, and (−)-gallocatechin. Crude PA extractions from different tissues were boiled in Butanol:HCl. Cyanidin, delphinidin, and pelargonidin were produced, indicating that cotton PAs include diverse extension unit structures. An ANR cDNA homolog (named GhANR1) was cloned from developing fibers. The open reading frame, composed of 1,011 bp nucleotides, was expressed in E. coli to obtain a recombinant protein. In the presence of NADPH, the recombinant enzyme catalyzed cyanidin, delphinidin, and pelargonidin to (−)-epicatechin and (−)-catechin, (−)-epigallocatechin and (−)-gallocatechin, and (−)-epiafzelechin and (−)-afzelechin, respectively. The ectopic expression of GhANR11 in an Arabidopsis ban mutant allowed for the reconstruction of the ANR pathway and PA biosynthesis in the seed coat. Virus-induced gene silencing (VIGS) of GhANR11 led to a significant increase in anthocyanins and a decrease in the PAs, (−)-epicatechin, and (−)-catechin in the stems and leaves of VIGS-infected plants. Taken together, these data demonstrate that the ANR pathway contributes to the biosynthesis of flavan-3-ols and PAs in cotton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ayres MP, Clausen TP, MacLean SF, Redman AM, Reichardt PB (1997a) Diversity of structure and antiherbivore activity in condensed tannins. Ecology 78:1696–1712

    Article  Google Scholar 

  • Ayres MP, Clausen TP, Stephen F, MacLean J, Redman AM, Reichardt PB (1997b) Diversity of structure and antiherbivore activity in condensed tannins. Ecology 78:1696–1712

    Article  Google Scholar 

  • Bais HP, Vepachedu R, Gilroy S, Callaway RM, Vivanco JM (2003) Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science 301:1377–1380

    Article  CAS  PubMed  Google Scholar 

  • Balde AM, de-Bruyne T, Pieters L, Claeys M, Vanden-Berghe D, Vlietinck A, Wary V, Kolodziej H (1993) Proanthocyanidins from stem bark of Pavetta owariensis: 3. NMR study of acetylated trimeric proanthocyanidins possessing a doubly-linked structure. J Nat Prod 56:1078–1088

    Article  CAS  Google Scholar 

  • Benedict JH, Altman DW, Umbeck PF, Ring DR (1992) Behavior, growth, survival, and plant injury by Heliothis-virescens (F) (Lepidoptera, Noctuidae) on transgenic Bt cottons. J Econ Entomol 85:589–593

    Article  Google Scholar 

  • Bernays EA (1981) Plant tannins and insect herbivores—an appraisal. Ecol Entomol 6:353–360

    Article  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Dixon RA, Xie DY, Sharma SB (2005) Proanthocyanidins—a final frontier in flavonoid research? New Phytol 165:9–28

    Article  CAS  PubMed  Google Scholar 

  • Dower WJ, Miller JF, Ragsdale CW (1988) High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res 16:6127–6145

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ferreira D, Nel RJJ, Bekker R (1999) Condensed tannins. In: Barton SD, Nakanishi K, Meth-Cohn O, Pinto BM (eds) Comprehensive natural products chemistry. Elsevier Science Ltd., Oxford, pp 791–797

    Google Scholar 

  • Forkner RE, Marquis RJ, Lill JT (2004) Feeny revisited: condensed tannins as anti-herbivore defences in leaf-chewing herbivore communities of Quercus. Ecol Entomol 29:174–187

    Article  Google Scholar 

  • Gagné S, Lacampagne S, Claisse O, Gény L (2009) Leucoanthocyanidin reductase and anthocyanidin reductase gene expression and activity in flowers, young berries and skins of Vitis vinifera L. cv. Cabernet-Sauvignon during development. Plant Physiol Biochem 47:282–290

    Article  PubMed  Google Scholar 

  • Gargouri M, Manigand C, Mauge C, Granier T, Langlois d’Estaintot B, Cala O, Pianet I, Bathany K, Chaudiere J, Gallois B (2009) Structure and epimerase activity of anthocyanidin reductase from Vitis vinifera. Acta Crystallogr Sect D Biol Crystallogr 65:989–1000

    Article  CAS  Google Scholar 

  • Gargouri M, Chaudiere J, Manigand C, Mauge C, Bathany K, Schmitter JM, Gallois B (2010) The epimerase activity of anthocyanidin reductase from Vitis vinifera and its regiospecific hydride transfers. Biol Chem 391:219–227

    Article  CAS  PubMed  Google Scholar 

  • Hagenbucher S, Olson DM, Ruberson JR, Wackers FL, Romeis J (2013) Resistance mechanisms against arthropod herbivores in cotton and their interactions with natural enemies. Crit Rev Plant Sci 32:458–482

    Article  CAS  Google Scholar 

  • Hanny BW (1980) Gossypol, flavonoid, and condensed tannin content of cream and yellow anthers of 5 cotton (Gossypium hirsutum L) cultivars. J Agric Food Chem 28:504–506

    Article  CAS  Google Scholar 

  • Hayasaka Y, Waters EJ, Cheynier V, Herderich MJ, Vidal S (2003) Characterization of proanthocyanidins in grape seeds using electrospray mass spectrometry. Rapid Commun Mass Spectrom 17:9–16

    Article  CAS  PubMed  Google Scholar 

  • Hubbell BJ, Marra MC, Carlson GA (2000) Estimating the demand for a new technology: Bt cotton and insecticide policies. Am J Agr Econ 82:118–132

    Article  Google Scholar 

  • Ismael Y, Bennett R, Morse S (2001) Farm level impact of Bt cotton is in South Africa. Biotechnol Dev Monit 48:15–19

    Google Scholar 

  • Jin L, Wei YY, Zhang L, Yang YH, Tabashnik BE, Wu YD (2013) Dominant resistance to Bt cotton and minor cross-resistance to Bt toxin Cry2Ab in cotton bollworm from China. Evol Appl 6:1222–1235

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lane HC, Schuster MF (1981) Condensed tannins of cotton leaves. Phytochemistry 20:425–427

    Article  CAS  Google Scholar 

  • Li TC, Fan HH, Li ZP, Wei J, Lin Y, Cai YP (2012) The accumulation of pigment in fiber related to proanthocyanidins synthesis for brown cotton. Acta Physiol Plant 34:813–818

    Article  Google Scholar 

  • Lin HC, Lee SS (2010) Proanthocyanidins from the leaves of Machilus philippinensis. J Nat Prod 73:1375–1380

    Article  CAS  PubMed  Google Scholar 

  • Lu ZZ, Zalucki MP, Perkins LE, Wang DY, Wu LL (2013) Towards a resistance management strategy for Helicoverpa armigera in Bt-cotton in northwestern China: an assessment of potential refuge crops. J Pest Sci 86:695–703

    Article  Google Scholar 

  • Mansour MH, Zohdy NM, ElGengaihi SE, Amr AE (1997) The relationship between tannins concentration in some cotton varieties and susceptibility to piercing sucking insects. J Appl Entomol Z Angew Entomol 121:321–325

    Article  CAS  Google Scholar 

  • Mascarenhas RN, Boethel DJ, Leonard BR, Boyd ML, Clemens CG (1998) Resistance monitoring to Bacillus thuringiensis insecticides for soybean loopers (Lepidoptera: Noctuidae) collected from soybean and transgenic Bt-cotton. J Econ Entomol 91:1044–1050

    Article  Google Scholar 

  • Mellway RD, Tran LT, Prouse MB, Campbell MM, Constabel CP (2009) The wound-, pathogen-, and ultraviolet B-responsive MYB134 gene encodes an R2R3 MYB transcription factor that regulates proanthocyanidin synthesis in poplar. Plant Physiol 150:924–941

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mole S (1993) The systematic distribution of tannins in the leaves of angiosperms: a tool for ecological studies. Biochem Syst Ecol 21:833–846

    Article  CAS  Google Scholar 

  • Mole S, Rogler JC, Morell CJ, Butler LG (1990) Herbivore growth reduction by tannins: use of waldbauer ratio techniques and manipulation of salivary protein production to elucidate mechanisms of action. Biochem Syst Ecol 18:183–197

    Article  CAS  Google Scholar 

  • Niu L, Ma Y, Mannakkara A, Zhao Y, Ma WH, Lei CL, Chen LZ (2013) Impact of single and stacked insect-resistant Bt-cotton on the honey bee and silkworm. PLoS One 8:e72988

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pang JH, Zhu Y, Li Q, Liu JZ, Tian YC, Liu YL, Wu JH (2013a) Development of Agrobacterium-mediated virus-induced gene silencing and performance evaluation of four marker genes in Gossypium barbadense. PLoS One 8:e73211

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pang YZ, Abeysinghe ISB, He J, He XZ, Huhman D, Mewan KM, Sumner LW, Yun JF, Dixon RA (2013b) Functional characterization of proanthocyanidin pathway enzymes from tea and their application for metabolic engineering. Plant Physiol 161:1103–1116

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Paolocci F, Robbins MP, Passeri V, Hauck B, Morris P, Rubini A, Arcioni S, Damiani F (2011) The strawberry transcription factor FaMYB1 inhibits the biosynthesis of proanthocyanidins in Lotus corniculatus leaves. J Exp Bot 62:1189–1200

    Article  CAS  PubMed  Google Scholar 

  • Peng QZ, Zhu Y, Liu Z, Du C, Li KG, Xie DY (2012) An integrated approach to demonstrating the ANR pathway of proanthocyanidin biosynthesis in plants. Planta 236:901–918

    Article  CAS  PubMed  Google Scholar 

  • Pray C, Ma DM, Huang JK, Qiao FB (2001) Impact of Bt cotton in China. World Dev 29:813–825

    Article  Google Scholar 

  • Punyasiri PAN, Abeysinghe ISB, Kumar V, Treutter D, Duy D, Gosch C, Martens S, Forkmann G, Fischer TC (2004) Flavonoid biosynthesis in the tea plant Camellia sinensis: properties of enzymes of the prominent epicatechin and catechin pathways. Arch Biochem Biophys 431:22–30

    Article  CAS  PubMed  Google Scholar 

  • Rawat MSM, Prasad D, Joshi RK, Pant G (1999) Proanthocyanidins from Prunus armeniaca roots. Phytochemistry 50:321–324

    Article  CAS  Google Scholar 

  • Rummel DR, Arnold MD, Gannaway J, Owen DF, Carroll SC, Deaton WR (1994) Evaluation of Bt cottons resistant to injury from bollworm (Lepidoptera, Noctuidae)—implications for pest-management in the Texas southern high-plains. Southw Entomol 19:199–207

    Google Scholar 

  • Salminen JP, Karonen M (2011) Chemical ecology of tannins and other phenolics: we need a change in approach. Funct Ecol 25:325–338

    Article  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning. A laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Schuster MF, Smith CW, Niles GA (1990) Registration of 9 upland cotton germplasm lines having elevated levels of condensed tannins. Crop Sci 30:1375-1375

    Article  Google Scholar 

  • Smith CW, Niles GA, Schuster MF (1990a) Registration of 11 upland cotton germplasm lines having elevated levels of condensed tannins. Crop Sci 30:1374-1374

    Google Scholar 

  • Smith CW, Schuster MF, Niles GA (1990b) Registration of 17 upland cotton germplasm lines having elevated levels of condensed tannins. Crop Sci 30:1374–1375

    Google Scholar 

  • Smith CW, McCarty JC, Altamarino TP, Lege KE, Schuster MF, Phillips JR, Lopez JD (1992) Condensed tannins in cotton and bollworm-budworm (Lepidoptera, Noctuidae) resistance. J Econ Entomol 85:2211–2217

    Article  CAS  Google Scholar 

  • Stenberg J, Witzell J, Ericson L (2006) Tall herb herbivory resistance reflects historic exposure to leaf beetles in a boreal archipelago age-gradient. Oecologia 148:414–425

    Article  PubMed  Google Scholar 

  • Tan JF, Wang MJ, Tu LL, Nie YC, Lin YJ, Zhang XL (2013) The flavonoid pathway regulates the petal colors of cotton flower. PLoS One 8:e72364

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tanner GJ, Francki KT, Abrahams S, Watson JM, Larkin PJ, Ashton AR (2003) Proanthocyanidin biosynthesis in plants. Purification of legume leucoanthocyanidin reductase and molecular cloning of its cDNA. J Biol Chem 278:31647–31656

    Article  CAS  PubMed  Google Scholar 

  • Xie D-Y, Dixon RA (2005) Proanthocyanidin biosynthesis—still more questions than answers? Phytochemistry 66:2127–2144

    Article  CAS  PubMed  Google Scholar 

  • Xie D-Y, Sharma SB, Paiva NL, Ferreira D, Dixon RA (2003) Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science 299:396–399

    Article  CAS  PubMed  Google Scholar 

  • Xie D-Y, Sharma SB, Dixon RA (2004) Anthocyanidin reductases from Medicago truncatula and Arabidopsis thaliana. Arch Biochem Biophys 422:91–102

    Article  CAS  PubMed  Google Scholar 

  • Xie D-Y, Sharma SB, Wright E, Wang Z-Y, Dixon RA (2006) Metabolic engineering of proanthocyanidins through co-expression of anthocyanidin reductase and the PAP1 MYB transcription factor. Plant J 45:895–907

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Peng Q-Z, Du C, Li K-G, Xie D-Y (2013) Characterization of flavan-3-ols and expression of MYB and late pathway genes involved in proanthocyanidin biosynthesis in foliage of Vitis bellula. Metabolites 3:185–203

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was financially supported by “the National State Laboratory of China”. This project was also supported by “Bai Ren Ji Hua, Hunan Province”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiahe Wu or De-Yu Xie.

Electronic supplementary material

S-Fig. 1 HPLC profiles of flavan-3-ols in crude extracts from different tissues. CA, (-)- catechin; EP, (-)- epicatechin; GC, (-)-gallocatechin; EGC, (-)-epicatechin.

S-Fig. 2 Amino acid sequence alignment from 18 ANR homologs. The Rossmann dinucleotide (NADPH/NADH) binding domain highlighted as “#####” has the sequence G-G-S-G-F-V-A. Abbreviations: LuANR, Lotus uliginosus; GmANR, Glycine max, MtANR, Medicago truncatula; CsANR, Camellia sinensis; DkANR, Diospyros kaki; VvANR, Vitis vinifera; MdANR, Malus x domestica; PcANR, Pyrus communis; PaANR, Prunus avium; TcANR, Theobroma cacao; FaANR, Fragaria x ananassa; AtANR, Arabidopsis thaliana; BdANR, Brachypodium distachyon.

S-Fig. 3 An unrooted phylogenetic tree containing 18 ANR homologs. This unrooted tree was developed using the deduced amino acid sequences of 18 ANR homologs. Abbreviations: LuANR, Lotus uliginosus; GmANR, Glycine max, MtANR, Medicago truncatula; CsANR, Camellia sinensis; DkANR, Diospyros kaki; VvANR, Vitis vinifera; MdANR, Malus x domestica; PcANR, Pyrus communis; PaANR, Prunus avium; TcANR, Theobroma cacao; FaANR, Fragaria x ananassa; AtANR, Arabiopsis thaliana; BdANR, Brachypodium distachyon.

S-Fig. 4 Comparison of HPLC profiles of flavan-3-ols from leaf and stem tissues from VIGS-infected and wild-type plants. CA:(-)-catechin, EP:(-)-epicatechin, GC: (-)-gallocatechin, EGC:(-)-epicatechin.

Below is the link to the electronic supplementary material.

Supplementary material 1 (JPEG 222 kb)

Supplementary material 2 (JPEG 2241 kb)

Supplementary material 3 (JPEG 35 kb)

Supplementary material 4 (JPEG 320 kb)

Supplementary material 5 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Wang, H., Peng, Q. et al. Functional characterization of an anthocyanidin reductase gene from the fibers of upland cotton (Gossypium hirsutum). Planta 241, 1075–1089 (2015). https://doi.org/10.1007/s00425-014-2238-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-014-2238-4

Keywords

Navigation