Skip to main content
Log in

Targeted mutagenesis using zinc-finger nucleases in perennial fruit trees

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Targeting a gene in apple or fig with ZFN, introduced by transient or stable transformation, should allow genome editing with high precision to advance basic science and breeding programs.

Genome editing is a powerful tool for precise gene manipulation in any organism; it has recently been shown to be of great value for annual plants. Classical breeding strategies using conventional cross-breeding and induced mutations have played an important role in the development of new cultivars in fruit trees. However, fruit-tree breeding is a lengthy process with many limitations. Efficient and widely applied methods for targeted modification of fruit-tree genomes are not yet available. In this study, transgenic apple and fig lines carrying a zinc-finger nuclease (ZFNs) under the control of a heat-shock promoter were developed. Editing of a mutated uidA gene, following expression of the ZFN genes by heat shock, was confirmed by GUS staining and PCR product sequencing. Finally, whole plants with a repaired uidA gene due to deletion of a stop codon were regenerated. The ZFN-mediated gene modifications were stable and passed onto regenerants from ZFN-treated tissue cultures. This is the first demonstration of efficient and precise genome editing, using ZFN at a specific genomic locus, in two different perennial fruit trees—apple and fig. We conclude that targeting a gene in apple or fig with a ZFN introduced by transient or stable transformation should allow knockout of a gene of interest. Using this technology for genome editing allows for marker gene-independent and antibiotic selection-free genome engineering with high precision in fruit trees to advance basic science as well as nontransgenic breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Beumer KJ, Trautman JK, Bozas A, Liu JL, Rutter J, Gall JG (2006) Efficient gene targeting in Drosophila by direct embryo injection with zinc-finger nucleases. Proc Natl Acad Sci USA 105:19821–19826

    Article  Google Scholar 

  • Brown SK (2012) Apple (Malus × domestica). In: Badnes ML, Byrne D (eds) Fruit breeding. Handbook of plant breeding, vol 8. Springer, US, pp 329–367

    Google Scholar 

  • Curtin SJ, Zhang F, Sander JD, Haun WJ, Starker C, Baltes NJ, Reyon D, Dahlborg EJ, Goodwin MJ, Coffman AP, Dobbs D, Joung JK, Voytas DF, Stupar RM (2011) Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases. Plant Physiol 156:466–473

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Doyon Y, McCammon JM, Miller JC, Faraji F, Ngo C, Katibah GE (2008) Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol 26:702–708

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fauser F, Schiml S, Puchta H (2014) Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J 79:348–359

    Article  CAS  PubMed  Google Scholar 

  • Flaishman MA, Rodov V, Stover E (2008) The fig: botany, horticulture, and breeding. Hortic Rev 34:113–196

    CAS  Google Scholar 

  • Freiman ZE, Doron-Faigenboim A, Dasmohapatra R, Yablovitz Z, Flaishman MA (2014) High-throughput sequencing analysis of common fig (Ficus carica L.) transcriptome during fruit ripening. Tree Genet Genomes 10:923–935

    Article  Google Scholar 

  • Geurts AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC, Choi VM, Jenkins SS, Wood A, Cui X, Meng X, Vincent A, Lam S, Michalkiewicz M, Schilling R, Foeckler J, Kalloway S, Weiler H, Ménoret S, Anegon I, Davis GD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Jacob HJ, Buelow R (2009) Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325:433

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hanke MV, Reidel M, Reim S, Flachowsky H (2007) Analysis of tissue uniformity in transgenic apple plants. Acta Hortic 738:301–306

    Google Scholar 

  • Hood EE, Gelyin SB, Melchers LS, Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2:208–218

    Article  CAS  Google Scholar 

  • James DJ, Passey AJ, Barbara DJ, Bevan M (1989) Genetic transformation of apple (Malus pumila Mill.) using a disarmed Ti-binary vector. Plant Cell Rep 7:658–661

    CAS  PubMed  Google Scholar 

  • Janick J, Moore JN (eds) (1996) Fruit breeding, tree and tropical fruits, vol 1. Wiley, New York

    Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO 6:3901–3907

    CAS  Google Scholar 

  • Jia H, Wang N (2014) Targeted genome editing of sweet orange using Cas9/sgRNA. PloS One 9:e93806

    Article  PubMed Central  PubMed  Google Scholar 

  • Johnson RA, Gurevich V, Levy AA (2013) A rapid assay to quantify the cleavage efficiency of custom-designed nucleases in planta. Plant Mol Biol 82:207–221

    Article  CAS  PubMed  Google Scholar 

  • Lloyd A, Plaisier CL, Carroll D, Drews GN (2005) Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proc Natl Acad Sci USA 102:2232–2237

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Malnoy M, Boresjza-Wysocka EE, John L, Norelli JL, Flaishman MA, Gidoni D, Aldwinckle HS (2010) Genetic transformation of apple (Malus × domestica) without use of a selectable marker gene. Tree Genet Genomes 6:423–433

    Article  Google Scholar 

  • Matzke MA, Mosher RA (2014) RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat Rev Genet 15:394–408

    Article  CAS  PubMed  Google Scholar 

  • Meng X, Noyes MB, Zhu LJ, Lawson ND, Wolfe SA (2008) Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol 26:695–701

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moehle EA, Rock JM, Lee YL, Jouvenot Y, DeKelver RC (2007) Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases. Proc Natl Acad Sci USA 104:3055–3060

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Norelli J, Mills J, Aldwinckle H (1996) Leaf wounding increases efficiency of Agrobacterium-mediated transformation of apple. HortScience 31:1026–1027

    Google Scholar 

  • Osakabe K, Osakabe Y, Toki S (2010) Site-directed mutagenesis in Arabidopsis using custom-designed zinc finger nucleases. Proc Natl Acad Sci USA 107:12034–12039

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Perez‐Jiménez M, López B, Dorado G, Pujadas‐Salvá A, Guzmán G, Hernández P (2012) Analysis of genetic diversity of southern Spain fig tree (Ficus carica L.) and reference materials as a tool for breeding and conservation. Hereditas 149:108–113

    Article  PubMed  Google Scholar 

  • Porteus MH, Baltimore D (2003) Chimeric nucleases stimulate gene targeting in human cells. Science 300:763

    Article  PubMed  Google Scholar 

  • Santiago Y, Chan E, Liu PQ, Orlando S, Zhang L, Urnov FD, Holmes MC, Guschin D, Waite A, Miller JC, Rebar EJ, Gregory PD, Klug A, Collingwood TR (2009) Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases. Proc Natl Acad Sci USA 105:5809–5814

    Article  Google Scholar 

  • Scorza R, Callahan A, Dardick C, Ravelonandro M, Polak J, Malinowski T, Zagrai I, Cambra M, Kamenova I (2013) Genetic engineering of Plum pox virus resistance: ‘HoneySweet’plum—from concept to product. Plant Cell Tissue Organ Cult 115:1–12

    Article  CAS  Google Scholar 

  • Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459:437–441

    Article  CAS  PubMed  Google Scholar 

  • Takahashi T, Komeda Y (1989) Characterization of two genes encoding small heat-shock proteins in Arabidopsis thaliana. Mol Gen Genet 219:365–372

    Article  CAS  PubMed  Google Scholar 

  • Tovkach A, Zeevi V, Tzfira T (2009) A toolbox and procedural notes for characterizing novel zinc finger nucleases for genome editing in plant cells. Plant J 57:747–757

    Article  CAS  PubMed  Google Scholar 

  • Tovkach A, Zeevi V, Tzfira T (2010) Validation and expression of ZFNs and in plant cells. Methods Mol Biol 649:315–336

    Article  CAS  PubMed  Google Scholar 

  • Townsend JA, Wright DA, Winfrey RJ, Fu F, Maeder ML (2009) High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459:442–445

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tripathi S, Suzuki J, Gonsalves D (2007) Development of genetically engineered resistant papaya for papaya ringspot virus in a timely manner. In: Ronald PC (ed) Plant-pathogen interactions. Humana Press, Totowa, pp 197–240

    Google Scholar 

  • Tzfira T, Weinthal D, Marton I, Zeevi V, Zuker A, Vainstein A (2012) Genome modifications in plant cells by custom-made restriction enzymes. Plant Biotechnol J 10:373–389

    Article  CAS  PubMed  Google Scholar 

  • Urnov FD, Miller JC, Lee Y-L, Beausejour CM, Rock JM, Augustus S, Jamieson AC, Porteus MH, Gregory PD, Holmes MC (2005) Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435:646–651

    Article  CAS  PubMed  Google Scholar 

  • Vainstein A, Marton I, Zuker A, Danziger M, Tzfira T (2011) Permanent genome modifications in plant cells by transient viral vectors. Trends Biotechnol 29:363–369

    Article  CAS  PubMed  Google Scholar 

  • Vanblaere T, Szankowski I, Schaart J, Schouten H, Flachowsky H, Broggini GA, Gessler C (2011) The development of a cisgenic apple plant. J Biotechnol 154:304–311

    Article  CAS  PubMed  Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A et al (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42:833–839

    Article  CAS  PubMed  Google Scholar 

  • Voytas DF (2013) Plant genome engineering with sequence-specific nucleases. Annu Rev Plant Biol 9:327–350

    Article  Google Scholar 

  • Wright DA, Townsend JA, Winfrey RJ Jr, Irwin PA, Rajagopal J, Lonosky PM, Hall BD, Jondle MD, Voytas DF (2005) High-frequency homologous recombination in plants mediated by zinc-finger nucleases. Plant J 44:693–705

    Article  CAS  PubMed  Google Scholar 

  • Yancheva SD, Golubowicz S, Yablowicz Z, Perl A, Flaishman MA (2005) Efficient Agrobacterium-mediated transformation and recovery of transgenic fig (Ficus carica L.) plants. Plant Sci 168:1433–1441

    Article  CAS  Google Scholar 

  • Zhang FL, Unger-Wallace E, Hoshaw JP, Reyon D, Christian M (2010) High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proc Natl Acad Sci USA 107:12023–12028

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Ministry of Agriculture, Bet Dagan, Israel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moshe A. Flaishman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peer, R., Rivlin, G., Golobovitch, S. et al. Targeted mutagenesis using zinc-finger nucleases in perennial fruit trees. Planta 241, 941–951 (2015). https://doi.org/10.1007/s00425-014-2224-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-014-2224-x

Keywords

Navigation