Skip to main content
Log in

Gene amplification of 5-enol-pyruvylshikimate-3-phosphate synthase in glyphosate-resistant Kochia scoparia

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Field-evolved resistance to the herbicide glyphosate is due to amplification of one of two EPSPS alleles, increasing transcription and protein with no splice variants or effects on other pathway genes.

The widely used herbicide glyphosate inhibits the shikimate pathway enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Globally, the intensive use of glyphosate for weed control has selected for glyphosate resistance in 31 weed species. Populations of suspected glyphosate-resistant Kochia scoparia were collected from fields located in the US central Great Plains. Glyphosate dose response verified glyphosate resistance in nine populations. The mechanism of resistance to glyphosate was investigated using targeted sequencing, quantitative PCR, immunoblotting, and whole transcriptome de novo sequencing to characterize the sequence and expression of EPSPS. Sequence analysis showed no mutation of the EPSPS Pro106 codon in glyphosate-resistant K. scoparia, whereas EPSPS genomic copy number and transcript abundance were elevated three- to ten-fold in resistant individuals relative to susceptible individuals. Glyphosate-resistant individuals with increased relative EPSPS copy numbers had consistently lower shikimate accumulation in leaf disks treated with 100 μM glyphosate and EPSPS protein levels were higher in glyphosate-resistant individuals with increased gene copy number compared to glyphosate-susceptible individuals. RNA sequence analysis revealed seven nucleotide positions with two different expressed alleles in glyphosate-susceptible reads. However, one nucleotide at the seven positions was predominant in glyphosate-resistant sequences, suggesting that only one of two EPSPS alleles was amplified in glyphosate-resistant individuals. No alternatively spliced EPSPS transcripts were detected. Expression of five other genes in the chorismate pathway was unaffected in glyphosate-resistant individuals with increased EPSPS expression. These results indicate increased EPSPS expression is a mechanism for glyphosate resistance in these K. scoparia populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ALS:

Acetolactate synthase

EPSPS:

5-enol-pyruvylshikimate-3-phosphate synthase

References

  • Alarcón-Reverte R, García A, Urzúa J, Fischer AJ (2013) Resistance to glyphosate in junglerice (Echinochloa colona) from California. Weed Sci 61:48–54. doi:10.1614/ws-d-12-00073.1

    Article  Google Scholar 

  • Baerson SR, Rodriguez DJ, Tran M, Feng YM, Biest NA, Dill GM (2002) Glyphosate-resistant goosegrass. Identification of a mutation in the target enzyme 5-enolpyruvylshikimate-3-phosphate synthase. Plant Physiol 129:1265–1275

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bell MS, Hager AG, Tranel PJ (2013) Multiple resistance to herbicides from four site-of-action groups in waterhemp (Amaranthus tuberculatus). Weed Sci 61:460–468

    Article  CAS  Google Scholar 

  • Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST +: architecture and applications. BMC Bioinf 10:421

    Article  Google Scholar 

  • Chandi A, Milla-Lewis SR, Giacomini D, Westra P, Preston C, Jordan DL, York AC, Burton JD, Whitaker JR (2012) Inheritance of evolved glyphosate resistance in a North Carolina Palmer amaranth (Amaranthus palmeri) biotype. Int J Agron. doi:10.1155/2012/176108

    Google Scholar 

  • Dinelli G, Marotti I, Bonetti A, Minelli M, Catizone P, Barnes J (2006) Physiological and molecular insight on the mechanisms of resistance to glyphosate in Conyza canadensis (L.) Cronq. biotypes. Pest Biochem Physiol 86:30–41. doi:10.1016/j.pestbp.2006.01.004

    Article  CAS  Google Scholar 

  • Dinelli G, Marotti I, Bonetti A, Catizone P, Urbano JM, Barnes J (2008) Physiological and molecular bases of glyphosate resistance in Conyza bonariensis biotypes from Spain. Weed Res 48:257–265

    Article  CAS  Google Scholar 

  • Duke SO, Powles SB (2008) Glyphosate: a once-in-a-century herbicide. Pest Manag Sci 64:319–325

    Article  CAS  PubMed  Google Scholar 

  • Friesen LF, Beckie HJ, Warwick SI, Van Acker RC (2009) The biology of Canadian weeds. 138. Kochia scoparia (L.) Schrad. Can J Plant Sci 89:141–167

    Article  Google Scholar 

  • Gaines TA, Zhang W, Wang D, Bukun B, Chisholm ST, Shaner DL, Nissen SJ, Patzoldt WL, Tranel PJ, Culpepper AS, Grey TL, Webster TM, Vencill WK, Sammons RD, Jiang JM, Preston C, Leach JE, Westra P (2010) Gene amplification confers glyphosate resistance in Amaranthus palmeri. Proc Natl Acad Sci USA 107:1029–1034

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gaines TA, Shaner DL, Ward SM, Leach JE, Preston C, Westra P (2011) Mechanism of resistance of evolved glyphosate-resistant Palmer amaranth (Amaranthus palmeri). J Agric Food Chem 59:5886–5889

    Article  CAS  PubMed  Google Scholar 

  • Gaines TA, Wright AA, Molin WM, Lorentz L, Riggins CW, Tranel PJ, Beffa R, Westra P, Powles SB (2013) Identification of genetic elements associated with EPSPS gene amplification. PLoS One 8:e65819. doi:10.1371/journal.pone.0065819

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ge X, d’Avignon DA, Ackerman JJH, Sammons RD (2010) Rapid vacuolar sequestration: the horseweed glyphosate resistance mechanism. Pest Manag Sci 66:345–348. doi:10.1002/ps.1911

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ge X, d’Avignon DA, Ackerman JJH, Duncan B, Spaur MB, Sammons RD (2011) Glyphosate-resistant horseweed made sensitive to glyphosate: low-temperature suppression of glyphosate vacuolar sequestration revealed by 31P NMR. Pest Manag Sci 67:1215–1221. doi:10.1002/ps.2169

    Article  CAS  PubMed  Google Scholar 

  • Ge X, d’Avignon DA, Ackerman JJH, Collavo A, Sattin M, Ostrander EL, Hall EL, Sammons RD, Preston C (2012) Vacuolar glyphosate-sequestration correlates with glyphosate resistance in ryegrass (Lolium spp.) from Australia, South America, and Europe: a 31P NMR investigation. J Agric Food Chem 60:1243–1250. doi:10.1021/jf203472s

    Article  CAS  PubMed  Google Scholar 

  • Giacomini D, Westra P, Ward SM (2014) Impact of genetic background in fitness cost studies: an example from glyphosate-resistant Palmer amaranth. Weed Sci 62:29–37

    Article  CAS  Google Scholar 

  • Góngora-Castillo E, Fedewa G, Yeo Y, Chappell J, DellaPenna D, Buell CR (2012) Genomic approaches for interrogating the biochemistry of medicinal plant species. Method Enzymol 517:139–159

    Article  Google Scholar 

  • Heap I (2014) The international survey of herbicide resistant weeds. Available on-line: www.weedscience.com. Accessed October 14, 2014

  • Jugulam M, Niehues K, Godar AS, Koo D-H, Danilova T, Friebe B, Sehgal S, Varanasi VK, Wiersma A, Westra P, Stahlman PW, Gill BS (2014) Tandem amplification of a chromosomal segment harboring EPSPS locus confers glyphosate resistance in Kochia scoparia. Plant Physiol. doi:10.1104/pp.1114.242826

    PubMed Central  PubMed  Google Scholar 

  • Kaundun SS, Dale RP, Zelaya IA, Dinelli G, Marotti I, McIndoe E, Cairns A (2011) A novel P106L mutation in EPSPS and an unknown mechanism(s) act additively to confer resistance to glyphosate in a South African Lolium rigidum population. J Agric Food Chem 59:3227–3233. doi:10.1021/jf104934j

    Article  CAS  PubMed  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAM tools. Bioinformatics 25:2078–2079

    Article  PubMed Central  PubMed  Google Scholar 

  • Lorentz L, Gaines TA, Nissen SJ, Westra P, Strek H, Dehne HW, Ruiz-Santaella JP, Beffa R (2014) Characterization of glyphosate resistance in Amaranthus tuberculatus populations. J Agric Food Chem 62:8134–8142. doi:10.1021/jf501040x

    Article  CAS  PubMed  Google Scholar 

  • Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:10–12. doi:10.14806/ej.17.1.200

    Article  Google Scholar 

  • Milne I, Bayer M, Cardle L, Shaw P, Stephen G, Wright F, Marshall D (2010) Tablet–next generation sequence assembly visualization. Bioinformatics 26:401–402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nandula VK, Ray JD, Ribeiro DN, Pan Z, Reddy KN (2013) Glyphosate resistance in tall waterhemp (Amaranthus tuberculatus) from Mississippi is due to both altered target-site and nontarget-site mechanisms. Weed Sci 61:374–383. doi:10.1614/ws-d-12-00155.1

    Article  CAS  Google Scholar 

  • Nandula VK, Wright AA, Bond JA, Ray JD, Eubank TW, Molin WT (2014) EPSPS amplification in glyphosate-resistant spiny amaranth (Amaranthus spinosus): a case of gene transfer via interspecific hybridization from glyphosate-resistant Palmer amaranth (Amaranthus palmeri). Pest Manag Sci. doi:10.1002/ps.3754

    Google Scholar 

  • Perez-Jones A, Park KW, Polge N, Colquhoun J, Mallory-Smith CA (2007) Investigating the mechanisms of glyphosate resistance in Lolium multiflorum. Planta 226:395–404. doi:10.1007/s00425-007-0490-6

    Article  CAS  PubMed  Google Scholar 

  • Powles SB (2008) Evolved glyphosate-resistant weeds around the world: lessons to be learnt. Pest Manag Sci 64:360–365. doi:10.1002/ps.1525

    Article  CAS  PubMed  Google Scholar 

  • Preston C, Wakelin AM (2008) Resistance to glyphosate from altered herbicide translocation patterns. Pest Manag Sci 64:372–376

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro DN, Pan Z, Duke SO, Nandula VK, Baldwin BS, Shaw DR, Dayan FE (2014) Involvement of facultative apomixis in inheritance of EPSPS gene amplification in glyphosate-resistant Amaranthus palmeri. Planta 239:199–212

    Article  CAS  PubMed  Google Scholar 

  • Sakuma M (1998) Probit analysis of preference data. Appl Entomol Zool 33:339–347

    Google Scholar 

  • Salas RA, Dayan FE, Pan Z, Watson SB, Dickson JW, Scott RC, Burgos NR (2012) EPSPS gene amplification in glyphosate-resistant Italian ryegrass (Lolium perenne ssp. multiflorum) from Arkansas. Pest Manag Sci 68:1223–1230

    Article  CAS  PubMed  Google Scholar 

  • Sammons DR, Gaines TA (2014) Glyphosate resistance: state of knowledge. Pest Manag Sci 70:1367–1377. doi:10.1002/ps.3743

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schulz MH, Zerbino DR, Vingron M, Birney E (2012) Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 28:1086–1092. doi:10.1093/bioinformatics/bts094

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shaner DL, Nadler-Hassar T, Henry WB, Koger CH (2005) A rapid in vivo shikimate accumulation assay with excised leaf discs. Weed Sci 53:769–774

    Article  CAS  Google Scholar 

  • Shaner DL, Lindenmeyer RB, Ostlie MH (2012) What have the mechanisms of resistance to glyphosate taught us? Pest Manag Sci 68:3–9

    Article  CAS  PubMed  Google Scholar 

  • Steinrücken HC, Amrhein N (1980) The herbicide glyphosate is a potent inhibitor of 5-enolpyruvylshikimic acid-3-phosphate synthase. Biochem Bioph Res Co 94:1207–1212

    Article  Google Scholar 

  • Tranel PJ, Riggins CW, Bell MS, Hager AG (2011) Herbicide resistances in Amaranthus tuberculatus: a call for new options. J Agric Food Chem 59:5808–5812

    Article  CAS  PubMed  Google Scholar 

  • Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotech 28:511–515

    Article  CAS  Google Scholar 

  • Vila-Aiub MM, Goh SS, Gaines TA, Han H, Busi R, Yu Q, Powles SB (2014) No fitness cost of glyphosate resistance endowed by massive EPSPS gene amplification in Amaranthus palmeri. Planta 239:793–801

    Article  CAS  PubMed  Google Scholar 

  • Waite J, Thompson CR, Peterson DE, Currie RS, Olson BLS, Stahlman PW, Al-Khatib K (2013) Differential kochia (Kochia scoparia) populations response to glyphosate. Weed Sci 61:193–200

    Article  CAS  Google Scholar 

  • Wakelin AM, Preston C (2006) A target-site mutation is present in a glyphosate-resistant Lolium rigidum population. Weed Res 46:432–440

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Phil Stahlman, Dr. Randall Currie, and Dr. Mike Moechnig for providing kochia seed samples; and Dr. Doug Sammons and Monsanto Co. for providing the EPSPS antibody.

Conflict of interest

This research was financially supported by the Colorado Wheat Administrative Committee and Monsanto Company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd A. Gaines.

Electronic supplementary material

Below is the link to the electronic supplementary material.

425_2014_2197_MOESM1_ESM.tif

Online Resource 1 Top panel: Geographical distribution of glyphosate-susceptible and -resistant K. scoparia populations in western Kansas. Susceptible (white circles) and resistant (black circles) K. scoparia population sample locations. Middle panel: Glyphosate-resistant K. scoparia field streak pattern. Glyphosate-resistant K. scoparia persist after glyphosate field treatment. Bottom panel: Representative glyphosate-susceptible and -resistant K. scoparia at 3 weeks after treatment. Glyphosate-susceptible (left) K. scoparia could be clearly differentiated from -resistant (right) individuals based on whole plant response to glyphosate treatment (TIFF 1238 kb)

425_2014_2197_MOESM2_ESM.png

Online Resource 2 EPSPS genomic copy number was measured in all individuals used for the transcriptomics study. Susceptible individuals had the expected EPSPS copy number, and all resistant individuals had increased EPSPS copy number (PNG 51 kb)

425_2014_2197_MOESM3_ESM.tif

Online Resource 3 Alignments of Illumina reads to A, the gDNA sequence of EPSPS in K. scoparia, and B, the assembled EPSPS transcript sequence. Glyphosate-susceptible, GS; glyphosate-resistant, GR. The alignments are evidence for no retained introns or exon rearrangements. R read depth was much greater than S read depth (see scale, indicative of higher expression in R); coverage pattern was nearly identical between R and S read alignments; and higher read coverage was observed in the center of the transcript. Alternatively spliced alleles would be expected to appear as reads aligned to segments of the genomic sequence other than the exons of the expected gene model (such as introns); no reads aligned outside of the expected exons (A). No noticeable gaps or drops in read coverage occur across the EPSPS transcript sequence (B), which would be expected if any exons were not transcribed (TIFF 217 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wiersma, A.T., Gaines, T.A., Preston, C. et al. Gene amplification of 5-enol-pyruvylshikimate-3-phosphate synthase in glyphosate-resistant Kochia scoparia . Planta 241, 463–474 (2015). https://doi.org/10.1007/s00425-014-2197-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-014-2197-9

Keywords

Navigation