Skip to main content
Log in

Floral primordia-targeted ACS (1-aminocyclopropane-1-carboxylate synthase) expression in transgenic Cucumis melo implicates fine tuning of ethylene production mediating unisexual flower development

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Floral primordia-targeted expression of the ethylene biosynthetic gene, ACS , in melon suggests that differential timing and ethylene response thresholds combine to promote carpels, inhibit stamens, and prevent asexual bud formation.

Typical angiosperm flowers produce both male and female reproductive organs. However, numerous species have evolved unisexuality. Melons (Cucumis melo L.) can produce varying combinations of male, female or bisexual flowers. Regardless of final sex, floral development begins with sequential initiation of all four floral whorls; unisexuality results from carpel or stamen primordia arrest regulated by the G and A loci, respectively. Ethylene, which promotes femaleness, is a key factor regulating sex expression. We sought to further understand the location, timing, level, and relationship to sex gene expression required for ethylene to promote carpel development or inhibit stamen development. Andromonoecious melons (GGaa) were transformed with the ethylene biosynthetic enzyme gene, ACS (1-aminocyclopropane-1-carboxylate synthase), targeted for expression in stamen and petal, or carpel and nectary, primordia using Arabidopsis APETALA3 (AP3) or CRABSCLAW (CRC) promoters, respectively. CRC::ACS plants did not exhibit altered sex phenotype. AP3::ACS melons showed increased femaleness manifested by gain of a bisexual-only phase not seen in wild type, decreased male buds and flowers, and loss of the initial male-only phase. In extreme cases, plants became phenotypically hermaphrodite, rather than andromonoecious. A reduced portion of buds progressed beyond initial whorl formation. Both the ACS transgene and exogenous ethylene reduced the expression of the native carpel-suppressing gene, G, while elevating expression of the stamen-suppressing gene, A. These results show ethylene-mediated regulation of key sex expression genes and suggest a mechanism by which temporally regulated ethylene production and differential ethylene response thresholds can promote carpels, inhibit stamens, and prevent the formation of asexual buds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bai SN, Xu ZH (2013) Unisexual flowers, sex and sex differentiation. Intern Rev Cell Mol Biol 304:1–49

    Article  CAS  Google Scholar 

  • Bai SL, Peng YB, Cui JX, Gu HT, Xi LY, Li YQ, Xu ZH, Bai SN (2004) Developmental analyses reveal early arrest of the spore-bearing parts of reproductive organs in unisexual flowers of cucumber (Cucumis sativus L.). Planta 220:230–240

    Article  PubMed  CAS  Google Scholar 

  • Barrett SCH, Hough J (2013) Sexual dimorphism in flowering plants. J Exp Bot 64:67–82

    Article  PubMed  CAS  Google Scholar 

  • Boualem A, Fergany M, Fernandez R, Troadec C, Martin A, Morin H, Sari M, Collin F, Flowers J, Pitrat M, Purugganan MD, Dogimont C, Bendahmane A (2008) A conserved mutation in an ethylene biosynthesis enzyme leads to andromonoecy in melons. Science 321:836–838

    Article  PubMed  CAS  Google Scholar 

  • Boualem A, Troadec C, Kovalski I, Sari M, Perl-Treves R, Bendhamane A (2009) A conserved ethylene biosynthesis enzyme leads to andromonoecy in two Cucumis species. PLoS One 4:e6144

    Article  PubMed  PubMed Central  Google Scholar 

  • Bowman JL, Smyth DR (1999) CRABS CLAW, a gene that regulates carpel and nectary development in Arabidopsis, encodes a novel protein with zinc finger and helix-loop-helix domains. Development 126:2387–2396

    PubMed  CAS  Google Scholar 

  • Byers RE, Baker LR, Sell HM, Herner RC, Dilley DR (1972) Ethylene: a natural regulator of sex expression in Cucumis melo L. Proc Natl Acad Sci USA 69:717–720

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chang WC, Lee TY, Huang HD, Huang HY, Pan RL (2008) PlantPAN: Plant promoter analysis navigator, for identifying combinatorial cis-regulatory elements with distance constraint in plant gene group. BMC Genomics 9:561

    Article  PubMed  PubMed Central  Google Scholar 

  • Den Nijs A, Visser D (1980) Induction of male flowering in gynoecious cucumbers (Cucumis sativus L.) by silver ions. Euphytica 29:237–280

    Google Scholar 

  • Diggle PK, Di Stilio VS, Gschwend AR, Golenberg EM, Moore RC, Russell JRW, Sinclair JP (2011) Multiple developmental processes underlie sex differentiation in angiosperms. Trends Genet 27:368–376

    Article  PubMed  CAS  Google Scholar 

  • Ezura HH, Amagai D, Yoshioka D, Oosawa K (1992) Highly frequent appearance of tetraploidy in regenerated melon plants, a universal phenomenon in tissue cultures of melon (Cucumis melo). Plant Sci 85:209–213

    Article  Google Scholar 

  • Fang G, Grumet R (1990) Agrobacterium tumefaciens mediated transformation and regeneration of muskmelon plants. Plant Cell Rep 9:160–164

    Article  PubMed  CAS  Google Scholar 

  • Galun E, Jung Y, Lang A (1963) Morphogenesis of floral buds of cucumber cultured in vitro. Dev Biol 6:370–387

    Article  CAS  Google Scholar 

  • Goffinet M (1990) Comparative ontology of male and female flowers of Cucumis sativus. In: Bates DM, Robinson RW, Jefferey C (eds) Biology and utilization of the Cucurbitaceae. Cornell Univ Press, Ithaca, pp 288–304

    Google Scholar 

  • Grumet R, Taft JA (2011) Sex expression in cucurbits. In: Kole C, Wang YH, Behera TK (eds) Genetics, genomics and breeding in cucurbits. Science Publishers Inc. Enfield NH and CRC Press (Taylor & Francis) Group, Boca Raton, pp 353–375

    Chapter  Google Scholar 

  • Hao YJ, Wang DH, Peng YB, Bai SL, Xu LY, Li YQ, Zu ZH, Bai SN (2003) DNA damage in the early primordial anther is closely correlated with stamen arrest in the female flower of cucumber (Cucumis sativus L.). Planta 217:888–895

    Article  PubMed  CAS  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Itzhaki H, Mason JM, Woodson WR (1994) An ethylene-responsive enhancer element is involved in the senescence-related expression of the carnation glutathione-S-transferase (GST1) gene. Proc Natl Acad Sci USA 91:8925–8929

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jack T (2001) Relearning our ABCs: new twists on an old model. Trends Plant Sci 6:310–316

    Article  PubMed  CAS  Google Scholar 

  • Jack T, Fox GL, Meyerwitz EM (1994) Arabidopsis homeotic gene APETALA3 ectopic expression: transcriptional and post-transcriptional regulation determine floral organ identity. Cell 76:703–716

    Article  PubMed  CAS  Google Scholar 

  • Jackson D (1991) In-situ hybridization in plants. In: Bowles DJ, Gurr SJ, McPherson M (eds) Molecular plant pathology. A practical approach. Oxford University Press, Oxford, pp 163–174

    Google Scholar 

  • Karchi Z (1970) Effects of 2-chloroethanephosphonic acid on flower types and flowering sequences in muskmelon. J Am Soc Hortic Sci 95:575–578

    Google Scholar 

  • Kennigsbuch D, Cohen Y (1989) The inheritance of gynoecy in muskmelon. Genome 33:317–320

    Article  Google Scholar 

  • Kidner C, Timmermans M (2006) In situ hybridization as a tool to study the role of miRNAs in plant development. Method Mol Cell Biol 342:159–179

    CAS  Google Scholar 

  • Kosugi S, Ohashi Y (2000) Cloning and DNA-binding properties of a tobacco Ethylene-Insensitive3 (EIN3) homolog. Nucleic Acid Res 28:960–967

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Li Z, Wang S, Tao Q, Pan J, Longting S, Gong Z, Cai R (2012) A putative positive feedback regulation mechanism in CsACS2 expression suggests a modified model for sex determination in cucumber (Cucumis sativus L.). J Exp Bot 63:4475–4484

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Little HA, Papadopoulou E, Hammar SA, Grumet R (2007) The influence of ethylene perception on sex expression in transgenic melon as assessed by expression of the mutant ethylene receptor gene, Atetr1-1, under control of constitutive and floral-targeted promoters. Sex Plant Reprod 20:123–136

    Article  CAS  Google Scholar 

  • Manzano S, Martinez C, Megias Z, Gomez P, Garrido D, Jamilena M (2011) The role of ethylene and brassinosteriods in the control of sex expression and flower development in Cucurbita pepo. Plant Growth Regul 65:213–221

    Article  CAS  Google Scholar 

  • Manzano S, Martinez C, Megias Z, Garrido D, Jamilena M (2013) Involvement of ethylene biosynthesis and signaling in the transition from male to female flowering in the monoecious Cucurbita pepo. J Plant Growth Regul 32:789–798

    Article  CAS  Google Scholar 

  • Martin A, Troadec C, Boualem A, Mazen R, Fernandez R, Morin H, Pitrat M, Dogimont C, Bendhamane A (2009) A transposon-induced epigenetic change leads to sex determination in melon. Nature 461:135–1139

    Article  Google Scholar 

  • Montgomery J, Goldman S, Deikman J, Margossian L, Fischer RL (1993) Identification of an ethylene-responsive region in the promoter of a fruit ripening gene. Proc Natl Acad Sci USA 90:5939–5943

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ohtsu K, Smith MB, Emrich SJ, Borsuk LA, Zhou B, Chen T, Zhang X, Timmermans MCP, Beck J, Buckner B, Janick-Buckner D, Nettleton D, Scanlon MJ, Schnable PS (2007) Global gene expression analysis of the shoot apical meristem of maize (Zea mays L.). Plant J 52:391–404

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Owens KW, Peterson CE, Tolla GE (1980) Production of hermaphrodite flowers on gynoecious muskmelon by silver nitrate and aminoethoxyvinylglycine. Hortscience 15:654–655

    CAS  Google Scholar 

  • Papadopoulou E, Little HA, Hammar SA, Grumet R (2005) Effect of modified endogenous ethylene production on sex expression, bisexual flower development, and fruit production in melon (Cucumis melo L.). Sex Plant Reprod 18:131–142

    Article  CAS  Google Scholar 

  • Perl-Treves R (1999) Male to female conversion along the cucumber shoot: approaches to study sex genes and floral development in Cucumis sativus. In: Ainsworth CC (ed) Sex determination in plants. BIOS Scientific, Oxford, pp 189–215

    Google Scholar 

  • Prestridge DS (1991) SIGNAL SCAN: a computer program that scans DNA sequences for eukaryotic transcriptional elements. CABIOS 7:203–206

    PubMed  CAS  Google Scholar 

  • Riechmann JL, Meyerowitz EM (1998) The AP2/EREBP family of plant transcription factors. Biol Chem 379:633–646

    PubMed  CAS  Google Scholar 

  • Robinson RW, Shannon S, La Guardia MD (1969) Regulation of sex expression in the cucumber. Bioscience 19:141–142

    Article  CAS  Google Scholar 

  • Rudich J (1990) Biochemical aspects of hormonal regulation of sex expression in Cucurbits. In: Bates DM, Robinson RW, Jefferey C (eds) Biology and utilization of the Cucurbitaceae. Cornell Univ Press, Ithaca, pp 269–280

    Google Scholar 

  • Rudich J, Haley AH, Kedar N (1969) Increase in femaleness of three cucurbits by treatment with ethrel, an ethylene-releasing compound. Planta 86:69–76

    Article  PubMed  CAS  Google Scholar 

  • Rudich J, Haley AH, Kedar N (1972) Ethylene evolution from cucumber plants related to sex expression. Plant Physiol 49:998–999

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Saito S, Fujii N, Miyazawa Y, Yamasaki S, Matsuura S, Mizusawa H, Fujita Y, Takahashi H (2007) Correlation between development of female flower buds and expression of the CSACS2 gene in cucumber plants. J Exp Bot 58:2897–2907

    Article  PubMed  CAS  Google Scholar 

  • Switzenberg J, Fernando L, Hammar S, Grumet R (2012) Effect of carpel primordial-targeted inhibition of ethylene perception on sex expression, fruit set and fruit ripening in melon (Cucumis melo L.). In: Sari N, Solmaz I, Aras V (eds) Cucurbitaceae 2012. Cukurova University Press, Adana, Turkey, pp 116–125

    Google Scholar 

  • Tabei Y, Kitade S, Nishizawa Y, Kikuchi N, Kayano T, Hibi T, Akustu K (1998) Transgenic cucumber plants harboring a rice chitinase gene exhibit enhanced resistance to gray mold (Botrytis cinerea). Plant Cell Rep 17:159–164

  • Takahashi H, Kamakura H, Sato Y, Shiono K, Abiko T, Tsutsumi N, Nagamura Y, Nishizawa NK, Nakazomo M (2010) A method for obtaining high quality RNA from paraffin sections of plant tissues by laser microdissection. J Plant Res 126:807–813

    Article  Google Scholar 

  • Trebitsh T, Rudich J, Riov J (1987) Auxin, biosynthesis of ethylene and sex expression in cucumber (Cucumis sativus). Plant Growth Regul 5:105–113

    Article  CAS  Google Scholar 

  • Trebitsh T, Staub JE, Oneill SD (1997) Identification of a 1-aminocyclopropane-1-carboxylic acid synthase gene linked to the Female (F) locus that enhances female sex expression in cucumber. Plant Physiol 113:987–995

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wang NN, Shih MC, Li N (2004) The GUS reporter-aided analysis of the promoter activities of Arabidopsis ACC synthase genes AtACS4, AtACS5, and AtACS7 induced by hormones and stresses. J Exp Bot 56:909–920

    Article  CAS  Google Scholar 

  • Weigel D, Meyerowitz EM (1994) The ABCs of floral homeotic genes. Cell 78:203–209

    Article  PubMed  CAS  Google Scholar 

  • Wu T, Qin Z, Feng Z, Zhou X, Xin M, Du Y (2012) Functional analysis of the promoter of a female-specific cucumber CsACS1G gene. Plant Mol Biol Rep 30:235–241

    Article  CAS  Google Scholar 

  • Xu RL, Goldman S, Coupe S, Deikmann J (1996) Ethylene control of E4 transcription during tomato fruit ripening involves two cooperative cis elements. Plant Mol Biol 31:1117–1127

    Article  PubMed  CAS  Google Scholar 

  • Yadav RC, Saleh MT, Grumet R (1996) High frequency shoot regeneration from leaf explants of muskmelon. Plant Cell Tissue Organ 45:207–214

    Article  CAS  Google Scholar 

  • Yamasaki S, Fujii N, Matsura S, Mizusawa H, Takahashi H (2001) The M locus and ethylene-controlled sex determination in andromonoecious cucumber plants. Plant Cell Physiol 42:608–619

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki S, Fujii N, Takahashi H (2003) Characterization of ethylene effects on sex determination in cucumber plants. Sex Plant Reprod 16:103–111

    Article  CAS  Google Scholar 

  • Yin T, Quinn JA (1995) Tests of a mechanistic model of one hormone regulating both sexes in Cucumis sativus (Cucurbitaceae). Am J Bot 82:1537–1546

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dan Raba for assistance in the greenhouse, Dr. Randy Beaudry for assistance with ethylene measurements, Dr. Jeff Landgraff of the MSU Research Technology Support Facility for advice with qRT-PCR analysis, and Drs. John Bowman (UC Riverside) and Vivian Irish (Yale Univ.) for providing the CRC and AP3 promoters. We also thank Drs. Cornelius Barry and Suzanne Hoffman-Benning for their helpful reviews of the manuscript. This project was in part supported by research grant US-3735-05C from BARD, the United States, Israel Binational Agricultural Research and Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca Grumet.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Switzenberg, J.A., Little, H.A., Hammar, S.A. et al. Floral primordia-targeted ACS (1-aminocyclopropane-1-carboxylate synthase) expression in transgenic Cucumis melo implicates fine tuning of ethylene production mediating unisexual flower development. Planta 240, 797–808 (2014). https://doi.org/10.1007/s00425-014-2118-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-014-2118-y

Keywords

Navigation