Skip to main content
Log in

VuDREB2A, a novel DREB2-type transcription factor in the drought-tolerant legume cowpea, mediates DRE-dependent expression of stress-responsive genes and confers enhanced drought resistance in transgenic Arabidopsis

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

VuDREB2A exists in cowpea as a canonical DREB2-type transcription factor, having the ability to bind dehydration-responsive elements in vitro and confer enhanced drought resistance in transgenic Arabidopsis.

Cowpea (Vigna unguiculata L. Walp) is an important cultivated legume that can survive better in arid conditions than other crops. But the molecular mechanisms involved in the drought tolerance of this species remain elusive with very few reported candidate genes. The Dehydration-Responsive Element-Binding Protein2 (DREB2) group of transcription factors plays key roles in plant responses to drought. However, no DREB2 ortholog has been reported from cowpea so far. In this study, we isolated and characterized a gene from cowpea, namely VuDREB2A, encoding a protein of 377 amino acids exhibiting features of reported DREB2-type proteins. In cowpea, VuDREB2A transcript accumulation was highly induced by desiccation, heat and salt, but slightly by exogenous abscisic acid (ABA) treatment. We also isolated the VuDREB2A promoter and predicted stress-responsive cis-elements in it using Arabidopsis microarray data. The E. coli-expressed VuDREB2A protein showed binding to synthetic oligonucleotides with Dehydration-Responsive Elements (DREs) from Arabidopsis, in electrophoretic mobility shift assays. Heterologous expression of VuDREB2A in Arabidopsis significantly improved plant survival under drought. In addition, overexpression of a truncated version of VuDREB2A, after removal of a putative negative regulatory domain (between amino acids 132–182) led to a dwarf phenotype in the transgenic plants. Microarray and quantitative PCR analyses of VuDREB2A overexpressing Arabidopsis revealed up-regulation of stress-responsive genes having DRE overrepresented in their promoters. In summary, our results indicate that VuDREB2A conserves the basic functionality and mode of regulation of DREB2A in Arabidopsis and could be a potent candidate gene for the genetic improvement of drought resistance in cowpea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

ABRE:

ABA-responsive element

DRE:

Dehydration-responsive element

DREB:

DRE-binding protein

EMSA:

Electrophoretic mobility shift assay

ERF:

Ethylene-responsive element-binding factor

FL:

Full length

HSE:

Heat stress-responsive element

LTE:

Low temperature-responsive element

MeJA:

Methyl jasmonate

PLACE:

Plant cis-acting regulatory DNA elements

RAR:

Relative appearance ratio

rd29A:

Responsive to dehydration 29A

SA:

Salicylic acid

SMART:

Simple modular architecture research tool

TAIR:

The Arabidopsis information resource

TR:

Truncated

TSS:

Transcription start site

References

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Agarwal P, Agarwal PK, Nair S, Sopory S, Reddy M (2007) Stress-inducible DREB2A transcription factor from Pennisetum glaucum is a phosphoprotein and its phosphorylation negatively regulates its DNA-binding activity. Mol Genet Genomics 277:189–198

    CAS  PubMed  Google Scholar 

  • Agbicodo E, Fatokun C, Muranaka S, Visser R (2009) Breeding drought tolerant cowpea: constraints, accomplishments, and future prospects. Euphytica 167:353–370

    Article  Google Scholar 

  • Bakshi S, Sadhukhan A, Mishra S, Sahoo L (2011) Improved Agrobacterium-mediated transformation of cowpea via sonication and vacuum infiltration. Plant Cell Rep 30:2281–2292

    Article  CAS  PubMed  Google Scholar 

  • Bakshi S, Roy NK, Sahoo L (2012a) Seedling preconditioning in thidiazuron enhances axillary shoot proliferation and recovery of transgenic cowpea plants. Plant Cell Tiss Org 110:77–91

    Article  CAS  Google Scholar 

  • Bakshi S, Saha B, Roy NK, Mishra S, Panda SK, Sahoo L (2012b) Successful recovery of transgenic cowpea (Vigna unguiculata) using the 6-phosphomannose isomerase gene as the selectable marker. Plant Cell Rep 31:1093–1103

    Article  CAS  PubMed  Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Gruissem W, Buchannan B, Jones R (eds) Biochemistry and molecular biology of plants. Am Soc Plant Physiolo, Rockville, pp 1158–1203

    Google Scholar 

  • Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Lü J, Wang T, Chen S, Wang H (2009) Activation of a DRE-binding transcription factor from Medicago truncatula by deleting a Ser/Thr-rich region. In Vitro Cell Dev-Pl 45:1–11

    CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Contour-Ansel D, Torres-Franklin ML, Cruz DE, Carvalho MH, D’Arcy-Lameta A, Zuily-Fodil Y (2006) Glutathione reductase in leaves of cowpea: cloning of two cDNAs, expression and enzymatic activity under progressive drought stress, desiccation and abscisic acid treatment. Ann Bot 98:1279–1287

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • D’Arcy-Lameta A, Ferrari-Iliou R, Contour-Ansel D, Pham-Thi AT, Zuily-Fodil Y (2006) Isolation and characterization of four ascorbate peroxidase cDNAs responsive to water deficit in cowpea leaves. Ann Bot 97:133–140

    Article  PubMed Central  PubMed  Google Scholar 

  • Diop NN, Kidrič M, Repellin A, Gareil M, d’Arcy-Lameta A, Pham Thi AT, Zuily-Fodil Y (2004) A multicystatin is induced by drought-stress in cowpea (Vigna unguiculata (L.) Walp) leaves. FEBS Lett 577:545–550

    Article  CAS  PubMed  Google Scholar 

  • Dunn MA, White AJ, Vural S, Hughes MA (1998) Identification of promoter elements in a low-temperature-responsive gene (blt4. 9) from barley (Hordeum vulgare L.). Plant Mol Biol 38:551–564

    Article  CAS  PubMed  Google Scholar 

  • El-Maarouf H, d’Arcy-Lameta A, Gareil M, Zuily-Fodil Y, Pham-Thi A (2001) Cloning and expression under drought of cDNAs coding for two PI-PLCs in cowpea leaves. Plant Physiol Bioch 39:167–172

    CAS  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206

    Article  CAS  PubMed  Google Scholar 

  • Fujiwara T, Hirai MY, Chino M, Komeda Y, Naito S (1992) Effects of sulfur nutrition on expression of the soybean seed storage protein genes in transgenic petunia. Plant Physiol 99:263–268

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gazendam I, Oelofse D (2007) Isolation of cowpea genes conferring drought tolerance Construction of a cDNA drought expression library. Water SA 33

  • Gupta K, Agarwal P, Reddy M, Jha B (2010) SbDREB2A, an A-2 type DREB transcription factor from extreme halophyte Salicornia brachiata confers abiotic stress tolerance in Escherichia coli. Plant Cell Rep 29:1131–1137

    Article  CAS  PubMed  Google Scholar 

  • Hall AE (2012) Phenotyping cowpeas for adaptation to drought. Front Physiol 3:155

    Article  PubMed Central  PubMed  Google Scholar 

  • Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L, Widmayer P, Gruissem W, Zimmermann P (2008) Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes. Adv Bioinformatics 2008:420747

    Article  PubMed Central  PubMed  Google Scholar 

  • Iuchi S, Yamaguchi-Shinozaki K, Urao T, Terao T, Shinozaki K (1996) Novel drought-inducible genes in the highly drought-tolerant cowpea: cloning of cDNAs and analysis of the expression of the corresponding genes. Plant Cell Physiol 37:1073–1082

    CAS  PubMed  Google Scholar 

  • Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (2001) Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J 27:325–333

    Article  CAS  PubMed  Google Scholar 

  • Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282

    CAS  PubMed  Google Scholar 

  • Kaplan B, Davydov O, Kight H, Galon Y, Kight MR, Fluhr R, Fromm H (2006) Rapid transcriptome changes induced by cytosolic Ca2+ transients reveal ABRE-related sequences as Ca2+-responsive cis elements in Arabidopsis. Plant Cell 18:2733–2748

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ke S, Madison EL (1997) Rapid and efficient site-directed mutagenesis by single-tube ‘megaprimer’ PCR method. Nucleic Acids Res 25:3371–3372

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim J, Mizoi J, Yoshida T, Fujita Y, Nakajima J, Ohori T, Todaka D, Nakashima K, Hirayama T, Shinozaki K (2011) An ABRE promoter sequence is involved in osmotic stress-responsive expression of the DREB2A gene, which encodes a transcription factor regulating drought-inducible genes in Arabidopsis. Plant Cell Physiol 52:2136–2146

    CAS  PubMed  Google Scholar 

  • Koressaar T, Remm M (2007) Enhancements and modifications of primer design program Primer3. Bioinformatics 23:1289–1291

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Larkin M, Blackshields G, Brown N, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Lata C, Prasad M (2011) Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot 62:4731–4748

    Article  CAS  PubMed  Google Scholar 

  • Lata C, Bhutty S, Bahadur RP, Majee M, Prasad M (2011) Association of an SNP in a novel DREB2-like gene SiDREB2 with stress tolerance in foxtail millet [Setaria italica (L.)]. J Exp Bot 62:3387–3401

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee S-J, Kang J-Y, Park H-J, Kim MD, Bae MS, Choi H-I, Kim SY (2010) DREB2C interact with ABF2, a bZIP protein regulating abscisic acid-responsive gene expression, and its overexpression affects abscisic acid sensitivity. Plant Physiol 153:716–727

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li Y, Ye W, Wang M, Yan X (2009) Climate change and drought: a risk assessment of crop-yield impacts. Climate Res 39:31

    Article  CAS  Google Scholar 

  • Li X, Waddington SR, Dixon J, Joshi AK, de Vicente MC (2011) The relative importance of drought and other water-related constraints for major food crops in South Asian farming systems. Food Sec 3:19–33

    Article  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) AP2/ERF family transcription factors in plant abiotic stress responses. BBA-Gene Regul Mech 1819:86–96

    CAS  Google Scholar 

  • Mizoi J, Ohori T, Moriwaki T, Kidokoro S, Todaka D, Maruyama K, Kusakabe K, Osakabe Y, Shinozaki K, Yamaguchi-Shinozaki K (2013) GmDREB2A;2, a canonical DEHYDRATION-RESPONSIVE ELEMENT-BINDING PROTEIN2-type transcription factor in soybean, is posttranslationally regulated and mediates dehydration-responsive element-dependent gene expression. Plant Physiol 161:346–361

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140:411–432

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ochman H, Gerber AS, Hartl DL (1988) Genetic applications of an inverse polymerase chain reaction. Genetics 120:621–623

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ohyama Y, Ito H, Kobayashi Y, Ikka T, Morita A, Kobayashi M, Imaizumi R, Aoki T, Komatsu K, Sakata Y, Satoshi I, Koyama H (2013) Characterization of AtSTOP1 orthologous genes in tobacco and other plant species. Plant Physiol 162:1937–1948

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Qin F, Sakuma Y, Tran LP, Maruyama K, Kidokoro S, Fujita Y, Fujita M, Umezawa T, Sawano Y, Miyazono K (2008) Arabidopsis DREB2A-interacting proteins function as RING E3 ligases and negatively regulate plant drought stress–responsive gene expression. Plant Cell 20:1693–1707

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rechsteiner M, Rogers SW (1996) PEST sequences and regulation by proteolysis. Trends Biochem Sci 21:267–271

    Article  CAS  PubMed  Google Scholar 

  • Reinbothe S, Mollenhauer B, Reinbothe C (1994) JIPs and RIPs: the regulation of plant gene expression by jasmonates in response to environmental cues and pathogens. Plant Cell 6:1197–1209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rushton PJ, Somssich IE (1998) Transcriptional control of plant genes responsive to pathogens. Curr Opin Plant Biol 1:311–315

    Article  CAS  PubMed  Google Scholar 

  • Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-Binding Specificity of the ERF/AP2 Domain of Arabidopsis DREBs, transcription factors involved in dehydration-and cold-inducible gene expression. Biochem Biophys Res Commun 290:998–1009

    Article  CAS  PubMed  Google Scholar 

  • Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18:1292–1309

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  Google Scholar 

  • Shahmuradov IA, Gammerman AJ, Hancock JM, Bramley PM, Solovyev VV (2003) PlantProm: a database of plant promoter sequences. Nucleic Acids Res 31:114–117

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Solleti SK, Bakshi S, Purkayastha J, Panda SK, Sahoo L (2008) Transgenic cowpea (Vigna unguiculata) seeds expressing a bean α-amylase inhibitor 1 confer resistance to storage pests, bruchid beetles. Plant Cell Rep 27:1841–1850

    Article  CAS  PubMed  Google Scholar 

  • Stockinger E, Gilmour S, Thomashow M (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA 94:1035–1040

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sun A, Yi S, Yang J, Zhao C, Liu J (2006) Identification and characterization of a heat-inducible ftsH gene from tomato (Lycopersicon esculentum Mill.). Plant Sci 170:551–562

    Article  CAS  Google Scholar 

  • Suzuki Y, Kawazu T, Koyama H (2004) RNA isolation from siliques, dry seeds, and other tissues of Arabidopsis thaliana. Biotechniques 37:542–544

    CAS  PubMed  Google Scholar 

  • Suzuki Y, Mae T, Makino A (2008) RNA extraction from various recalcitrant plant tissues with a cethyltrimethylammonium bromide-containing buffer followed by a acid guanidium thiocyanate-phenol-chloroform treatment. Biosci Biotechnol Biochem 72:1951–1953

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  Google Scholar 

  • Telenius H, Carter NP, Bebb CE, Ponder BA, Tunnacliffe A (1992) Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics 13:718–725

    Article  CAS  PubMed  Google Scholar 

  • Timko MP, Rushton PJ, Laudeman TW, Bokowiec MT, Chipumuro E, Cheung F, Town CD, Chen X (2008) Sequencing and analysis of the gene-rich space of cowpea. BMC Genom 9:103

    Article  Google Scholar 

  • Töpfer R, Matzeit V, Gronenborn B, Schell J, Steinbiss HH (1987) A set of plant expression vectors for transcriptional and translational fusions. Nucleic Acids Res 15:5890

    Article  PubMed Central  PubMed  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vartanian N, Marcotte L, Giraudat J (1994) Drought rhizogenesis in Arabidopsis thaliana Differential responses of hormonal mutants. Plant Physiol 104(761):767

    Google Scholar 

  • Wang Y, Liu G, Yan X, Wei Z, Xu Z (2011) MeJA-inducible expression of the heterologous JAZ2 promoter from Arabidopsis in Populus trichocarpa protoplasts. J Plant Dis Protect 118:69

    CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6:251–264

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamamoto YY, Yoshitsugu T, Sakurai T, Seki M, Shinozaki K, Obokata J (2009) Heterogeneity of Arabidopsis core promoters revealed by high-density TSS analysis. Plant J 60:350–362

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto Y, Yoshioka Y, Hyakumachi M, Maruyama K, Yamaguchi-Shinozaki K, Tokizawa M, Koyama H (2011) Prediction of transcriptional regulatory elements for plant hormone responses based on microarray data. BMC Plant Biol 11:39

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang T, Poovaiah BW (2002) A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants. J Biol Chem 277:45049–45058

    Article  CAS  PubMed  Google Scholar 

  • Yoshida T, Ohama N, Nakajima J, Kidokoro S, Mizoi J, Nakashima K, Maruyama K, Kim J, Seki M, Todaka D (2011) Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression. Mol Genet Genomics 286:321–332

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Department of Biotechnology, Government of India and the Japanese Society for the Promotion of Science for financial support. AS is grateful to the Ministry of Human Resource Development, Government of India for research fellowship.

Conflict of interest

The authors declare that they do not have any competing interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingaraj Sahoo.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadhukhan, A., Kobayashi, Y., Kobayashi, Y. et al. VuDREB2A, a novel DREB2-type transcription factor in the drought-tolerant legume cowpea, mediates DRE-dependent expression of stress-responsive genes and confers enhanced drought resistance in transgenic Arabidopsis . Planta 240, 645–664 (2014). https://doi.org/10.1007/s00425-014-2111-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-014-2111-5

Keywords

Navigation